
Acta Informatica manuscript No.
(will be inserted by the editor)

Dynamic Controllability via Timed Game Automata

Alessandro Cimatti · Luke Hunsberger ·
Andrea Micheli · Roberto Posenato ·
Marco Roveri

the date of receipt and acceptance should be inserted later

Abstract Temporal networks are data structures for representing and reasoning
about temporal constraints on activities. Many kinds of temporal networks have
been defined in the literature, differing in their expressiveness. The simplest kinds
of networks have polynomial algorithms for determining their temporal consistency
or different levels of controllability, but corresponding algorithms for more expres-
sive networks (e.g., those that include observation nodes or disjunctive constraints)
have so far been unavailable.

This paper introduces a new approach to determine the dynamic controlla-
bility of a very expressive class of temporal networks that accommodates obser-
vation nodes and disjunctive constraints. The approach is based on encoding the
dynamic controllability problem into a reachability game for Timed Game Au-
tomata (TGAs). This is the first sound and complete approach for determining
the dynamic controllability of such networks. The encoding also highlights the the-
oretical relationships between various kinds of temporal networks and TGAs. The
new algorithms have immediate applications in the design and analysis of work-
flow models being developed to automate business processes, including workflows
in the health-care domain.

Keywords Dynamic Controllability · Temporal Networks · Timed Game
Automata

This paper is an extended version of two earlier papers [10,9].

Alessandro Cimatti
Fondazione Bruno Kessler, Via Sommarive 18, 38123, Trento, Italy. E-mail: cimatti@fbk.eu

Luke Hunsberger
Vassar College, 124 Raymond Ave. Box 444, Vassar College Poughkeepsie, NY, USA. E-mail:
hunsberg@cs.vassar.edu

Andrea Micheli
Fondazione Bruno Kessler, Via Sommarive 18, 38123, Trento, Italy. E-mail: amicheli@fbk.eu

Roberto Posenato
University of Verona, via le Grazie 15, 37134, Verona, Italy. E-mail: roberto.posenato@univr.it

Marco Roveri
Fondazione Bruno Kessler, Via Sommarive 18, 38123, Trento, Italy. E-mail: roveri@fbk.eu

This is a pre-print version of the homonymous paper appearing in Acta Informatica 2016.
Copyright (c) 2016 belongs to Springer. DOI: https://doi.org/10.1007/s00236-016-0257-2

2 Cimatti, Hunsberger, Micheli, Posenato and Roveri

1 Introduction

Constraint-based temporal reasoning has been widely used in many different ap-
plications across many different domains. Over the years, different formalisms have
been presented to address specific requirements that frequently arise in real-world
applications. The most commonly used formalism is probably the Simple Tempo-
ral Network (STN), in which a set of real-valued variables, called time-points, are
subject to convex, binary difference constraints [19]. Recently, a significant amount
of research has focused on temporal reasoning in the presence of uncertainty. Tem-
poral uncertainty arises, for example, in AI planning when the durations of some
activities (i.e., the durations of some temporal intervals) are not controlled by the
plan executor (or agent), but instead are only observed in real time as the activities
complete. In such settings, the executor seeks a dynamic strategy for executing the
controllable time-points such that all relevant constraints will necessarily be sat-
isfied no matter how the uncertain durations turn out. To accommodate this kind
of uncertainty, STNs have been augmented to include contingent links, where each
contingent link represents an interval whose duration is bounded but uncontrol-
lable; the resulting network is called a Simple Temporal Network with Uncertainty
(STNU) [47].

An STNU can be viewed as a data structure for representing certain kinds of
knowledge about a situation. Given some STNU, different kinds of questions can be
asked. In the literature, three types of controllability have been identified—strong,
dynamic and weak—that make different assumptions about when the durations of
the contingent links become known to the executor [47].

This paper focuses on dynamic controllability (DC) — that is, whether there
exists a strategy for executing the controllable time-points that depends only on
past observations of the outcomes of uncontrollable durations, and that guaran-
tees that all relevant constraints will be satisfied no matter how the durations of
the contingent links turn out. Polynomial algorithms for checking the dynamic
controllability of STNUs [36,33,25,34] and run-time algorithms for generating an
execution strategy in real-time [23,24] have been presented in the literature.

Although STNUs have been successful in some domains, many other domains
require a richer set of constraints and features. For example, in the health-care
domain, where workflow management systems are being developed to automate
medical-treatment processes, medical tests for any given patient frequently gener-
ate information in real time that can affect which treatment pathway the patient
will follow [13]. The system must guarantee that any possible execution of the work-
flow strictly satisfies all specified temporal constraints no matter which test out-
comes are observed. The Conditional Simple Temporal Network with Uncertainty
(CSTNU) has been introduced to represent the temporal features of workflows,
and the dynamic controllability property—which captures the temporal safety of
workflows—has been defined for CSTNUs [26]. Although some progress has been
made toward a DC-checking algorithm for arbitrary CSTNUs [15], a sound-and-
complete DC-checking algorithm for CSTNUs has not yet been found.

Disjunctive constraints also arise in workflow management systems, for exam-
ple, when two tests cannot be done simultaneously, but can be done in either order.
Strong, dynamic and weak controllability have been defined for Disjunctive Tem-
poral Networks with Uncertainty (DTNUs) [43,38], and algorithms for checking
the strong and weak controllability properties for DTNUs have been proposed [38,

Dynamic Controllability via Timed Game Automata 3

12,11]; however, a dynamic controllability algorithm has only been presented for
a subclass of DTNUs [43].

This paper makes the following contributions. First, it summarizes the char-
acteristics of STNUs, CSTNUs and DTNUs and then it combines them within a
single, unifying formalism called Conditional Disjunctive Temporal Network with
Uncertainty (CDTNU). Second, it presents a novel approach for checking the dy-
namic controllability of such networks whereby any given CDTNU is translated
into a Timed Game Automaton (TGA) [32] such that the dynamic controllability
problem for the CDTNU is equivalent to a reachability game for the generated
TGA. The reachability game is then solved using off-the-shelf software that is able
to synthesize a viable execution strategy or determine that no such strategy ex-
ists [5]. This paper presents different instantiations of this approach that address
the contingent links and observation time-points of CSTNUs, and the disjunctive
constraints of DTNUs. The result is the first sound-and-complete DC-checking
algorithm for temporal networks having contingent links, disjunctive constraints
and observation time-points in any combination. Finally, the encoding of such
networks into TGAs highlights important theoretical relationships between the
different kinds of temporal reasoning frameworks and the TGA framework.

1.1 Related Work

Starting from the seminal paper of Dechter et al. [19] describing the Simple Tem-
poral Problem (STP) and the Temporal Constraint Satisfaction Problem (TCSP),
researchers have explored a variety of techniques for solving temporal problems in
the face of uncertainty.1 Vidal and colleagues [48,49,46,47] introduced the Simple
Temporal Problem under Uncertainty (STPU), and defined three different kinds of
controllability: weak, dynamic and strong. The dynamic controllability (DC) prob-
lem for STNUs, which is the most relevant to real-world applications, has been
widely studied, yielding a variety of DC-checking algorithms and techniques for
managing the execution of DC networks [35,36,33,22–25]. Venable and colleagues
have defined extensions of the STPU that include disjunction and preferences [39,
38,43,44]. Cimatti et al. focus on strong and weak controllability, while also al-
lowing disjunctive constraints [11,12].

Tsamardinos et al. introduced the Conditional Temporal Problem (CTP), an
extension of the STP that includes observation nodes [42]. Each observation node
has a corresponding Boolean propositional variable. The execution of the observa-
tion node determines the truth value of its corresponding propositional variable.
In addition, time-points can be labeled with arbitrary conjunctions of (positive
or negative) propositional variables; time-points need only be executed in scenar-
ios where the corresponding Boolean label is true. The authors presented a formal
semantics for the dynamic consistency problem: to determine if there exists a strat-
egy for executing the time-points in the network that guarantees that all of the

1 Some authors choose to distinguish the network data structure from the problem being
solved, giving rise to parallel notations such as STN vs. STP, CSTN vs. CTP, STNU vs. STPU,
DTN vs. DTP, and so on. This is useful given that one can pose a variety of problems for a
given network structure (e.g., strong controllability vs. weak controllability for STNUs). This
paper primarily uses the “N” notation, the major exceptions being when describing the work
of other authors who have tended to use the “P” notation.

4 Cimatti, Hunsberger, Micheli, Posenato and Roveri

constraints will be satisfied no matter how the observations turn out. They also
showed how to convert the semantic constraints from the definition of dynamic
consistency into a DTP, which enabled them to solve the dynamic consistency
problem using an off-the-shelf DTP solver, albeit in exponential time.

Hunsberger et al. [26] defined a Conditional Simple Temporal Network with
Uncertainty (CSTNU) that combines the contingent links from STNUs with the
observation nodes from the CTP. They defined the dynamic controllability prop-
erty for CSTNUs in a way that generalizes both the dynamic controllability of
STNUs and the dynamic consistency of the CTP. Combi et al. [15] introduced a
sound-but-not-complete DC-checking algorithm for CSTNUs based on a variety
of constraint-propagation rules. Preliminary empirical results suggest that that
algorithm can be practically efficient, even if its time complexity is exponential
in the worst case. A complete DC-checking algorithm for CSTNUs following that
approach has not yet been presented.

The work that is most closely related to ours is due to Vidal [45]. In that work,
Timed Game Automata (TGAs) are used to check the dynamic controllability of
a variant of STNUs called Contingent Temporal Constraint Networks (CTCNs).
The algorithm incrementally constructs a TGA, interleaving checks for winning
TGA strategies along the way. The most significant drawback is that the resulting
TGA has exponential size, compared to the linear-sized TGAs generated by our
approach. Moreover, the approach presented in this paper goes beyond the STNU
formalism by accommodating both disjunctive constraints and observation nodes.

Orlandini and colleagues [7,37] have used TGAs to validate timeline-based
plans. In that work, each plan is encoded as a TGA that includes an uncontrol-
lable observer that plays the role of the environment. The observer checks the con-
trollability of the plan and synthesizes a controller. Their plan-to-TGA approach
deviates from the standard definition of dynamic controllability by allowing a free
time-point to be scheduled instantaneously upon the observation of an uncontrol-
lable execution event. In addition, their approach is limited to non-disjunctive,
non-conditional temporal constraints [37].

Recently, Cheikhrouhou et al. proposed the use of TGAs for analyzing temporal
constraints in business processes represented as an extended version of the Business
Process Model Notation (BPMN) [8]. Their proposal does not consider uncertainty
and uses TGAs only for verifying a subset of possible temporal constraints—the
duration of activities (i.e. the duration constraints) and the time between events
(i.e. the temporal dependency constraints)—in sequential or parallel branches.

Abdeddaim et al. [1] use STNUs to represent strategies for a subclass of
TGAs—the exact opposite of our approach. In their work, an executor needs to
be able to solve the DC-checking problem (e.g., using an on-line algorithm) to
generate a TGA strategy.

As already mentioned, many researchers have addressed the Dynamic Control-
lability decision problem [36,33] and the problem of managing the execution of
DC networks using on-line reasoning algorithms [33,24]. However, none of them
have addressed the problem of synthesizing directly executable strategies.

Recently, Morris [34] presented an algorithm that not only checks the dynamic
controllability property for STNUs in O(N3) time, but also can be used to generate
a dispatchable network from any dynamically controllable network. The dispatch-
able network can be executed with minimal constraint propagation using a greedy
dispatcher.

Dynamic Controllability via Timed Game Automata 5

1.2 Paper structure

The paper is structured as follows. Section 2 introduces the healthcare workflows
that motivate this work and provides a running example for the rest of the paper.
Section 3 formally presents four classes of temporal networks that accommodate
different kinds of temporal uncertainty: STNU, CSTNU, DTNU and CDTNU. For
each type of network, the dynamic controllability problem is addressed. Section 4
analyzes the different features of the temporal networks under analysis and for
each of them presents a formal encoding of the dynamic controllability problem as
a TGA reachability game. Finally, Section 5 discusses the features and limitations
of the presented approach and highlights promising lines of research for the future.

2 Motivating Example: Healthcare Workflows

A workflow is an abstract model for representing, coordinating and controlling
complex processes. A workflow management system is a software suite that sup-
ports the automatic execution of workflows [21]. Although workflows are being
applied to a variety of businesses, the research presented in this paper has been
motivated by the use of workflows to automate medical-treatment processes in the
healthcare domain [4]. The workflow technology may help to plan and manage the
executions of medical-treatment processes that can be very different due the pres-
ence of many possibilities and combinations of events, even in situations having a
general pattern to be followed. Moreover, planning in advance and constantly mon-
itoring the process in an automatic way may help identifying previously unforeseen
courses of development.

In a workflow management system, the management of temporal aspects is
critical. The literature contains many proposals for extending workflow models
to represent and manage the most important kinds of temporal constraints that
arise in various domains [20,17,14]. This paper focuses on the conceptual model
proposed by Combi et al. [16], where a workflow is specified by a workflow schema:
a directed graph where nodes represent activities, and arcs represent control flows
that define dependencies among activities, including constraints on the order of
execution. Fig. 1 illustrates a small portion of a workflow schema (or graph).

There can be two types of activities in a workflow graph: tasks and connectors.
Tasks represent elementary work units to be executed by external agents (e.g.,
doctors); connectors represent internal activities executed by the workflow man-
agement system to coordinate the execution of tasks. In the graph, each task is
represented by a box containing a name (e.g., Neurological Evaluation) and a range
(e.g., [5, 10]) that constrains the task’s duration during execution. Each connector
is represented by a diamond that, similarly, may contain a temporal range con-
straining its duration. Additional information associated with a connector depends
on its type—split or join—as discussed below.

The arcs in a workflow graph are labeled directed edges that impose ordering
constraints among nodes and, optionally, temporal delays. For example, an arc
from a predecessor node N1, to a successor node N2, with the label [5,10], specifies
that N2 must start between 5 and 10 time units after the completion of N1. A split
connector has one incoming arc and multiple outgoing arcs. After the execution
of the split connector node, one or more successor nodes must be considered for

6 Cimatti, Hunsberger, Micheli, Posenato and Roveri

1

Cardiological
Evaluation

[5,20]

Neurological
Evaluation

[5,10]

2
Emerg.?

Age

> 70

Elder Emergency
Treatment
[10,20]

Emergency
Treatment

[8,10]

Standard
Treatment
[10,30]

yes
[0,1]

no
[0,10]

no
[0,5]

yes
[0,10]

E[7,14]E

E[10,25]E

Disjunctive Conditional

Fig. 1 An excerpt of a simplified triage workflow schema. The example is composed of two
parts, labeled as “Disjunctive” and “Conditional” with braces, that will be referenced in the
paper.

execution, depending on whether the split connector type is parallel, alternative or
conditional. Join connectors are the dual of split connectors, having multiple in-
coming arcs but only one outgoing arc. Join connectors effectively close branching
paths opened by split connectors.

The workflow in Fig. 1 represents a simplified triage process for a hospital emer-
gency room. In the figure, all temporal ranges are in minutes; parallel connectors
are identified by and conditional connectors by ; and each connector is pre-
sumed to have a temporal range of [0,0]. According to this workflow, an incoming
patient is first evaluated from cardiological and neurological points of view: two
parallel tasks that can be done in either order, but cannot overlap. The subsequent
treatment path depends on the observation of two Boolean conditions: (1) whether
it is an emergency (Emerg.?); and (2) whether the patient is old (Age > 70?). In the
non-emergency case, the patient is given a Standard Treatment. But for an emergency,
depending on the patient’s age, the patient is given either Emergency Treatment or
Elder Emergency Treatment. In other words, the conditional connectors, Emerg.? and

(Age>70), each split the flow into alternative pathways based on the observation
of their corresponding Boolean conditions.

Finally, some activities may be subject to important timing conditions, there-
fore workflows also include dashed edges that represent temporal constraints. Such
constraints may relate the starting or ending times of the source and target nodes
in any combination. For example, the dashed edge labeled by E[7,14]E specifies that
the end of the Emergency Treatment task must occur between 7 and 14 minutes after
the end of the Emerg.? connector. The other dashed edge similarly specifies that
the end of the Elder Emergency Treatment task must occur between 10 and 25 minutes
after the end of the Emerg.? connector.

Once a workflow schema is defined, many questions can arise regarding its
possible executions: is there sufficient time for executing it? Which resources are

Dynamic Controllability via Timed Game Automata 7

necessary for executing it?, etc. Among all, one question seems to be the funda-
mental one: is there a strategy for executing the possible instances of the schema
that guarantees that all structural, temporal, and resource constraints will not
be violated? Even considering only the temporal constraints described above, the
number of possible instances of a schema can be very large, depending on both
the conditional connectors (each of which splits a flow into at least two alternative
flows) and the temporal durations of the tasks. Indeed, if the duration of a task
cannot be fixed prior to execution, but only observed after its completion (e.g.,
as in the case of medical tests), then there may be many different instances of a
single schema corresponding to the different possible task durations.

In order to answer the fundamental question, a careful analysis of the workflow
schema is needed. In fact, we must determine whether all the possible instances
can be successfully executed despite the uncertainty associated with conditional
connectors and task durations.

3 The Dynamic Controllability of Temporal Networks

A workflow can be viewed as a constraint system that involves a rich variety
of temporal constraints and features. Over the years, a number of formalisms
have been presented in the literature to address different kinds of temporal in-
formation. Most of those formalisms are constraint networks in which real-valued
variables called time-points are subject to various kinds of constraints. This sec-
tion presents the relevant background for several kinds of temporal networks along
with the corresponding dynamic controllability problems. It then introduces a new
kind of network, called a Conditional Disjunctive Temporal Network with Uncer-
tainty (CDTNU), that subsumes all of the features of the preceding networks. The
CDTNU formalism enables a unified view of a substantial portion of the temporal
problems that have been addressed in the literature. Fig. 2 previews the temporal
networks that are relevant to this paper.

Each of the temporal networks presented in this section includes a set of real-
valued variables called time-points, and a set of binary difference constraints on
those variables. In a Simple Temporal Network (STN), the scheduler (or agent) is
presumed to control the execution of all of the time-points [19]. Thus, the most
important property of an STN is whether it is consistent (i.e., whether there exists
an assignment to the time-points that satisfies all of the constraints). Thus, the
Simple Temporal Problem (STP) is a kind of constraint satisfaction problem.
Against that background, this paper addresses uncertainty in temporal networks
that arises from two sources.

Tasks with Uncertain Durations

One source of uncertainty arises when the duration of a task is not under the
control of the scheduler, although that duration may have known bounds. Such
tasks are represented by contingent links [47]. Each contingent link specifies bounds
on the duration of a temporal interval between a starting time-point and an ending
time-point. While the scheduler may control the execution of the starting time-
point, it does not control the duration of the interval; thus, it does not control

8 Cimatti, Hunsberger, Micheli, Posenato and Roveri

STN/STP [19]

DTP [40] STNU [47] CTP [41]

CSTNU [15]DTNU [38]

CDTNU

Fig. 2 An overview of the different kinds of temporal networks, with corresponding citations.
Arrows represent expressiveness subsumption. The CDTNU box is highlighted since it con-
stitutes an original contribution of this paper. Dashed boxes indicate networks that are not
discussed in this paper.

the execution of the ending time-point. To accommodate this difference, the time-
points in a network with contingent links are partitioned into two classes: free and
uncontrollable. Typically, the starting time-point of a contingent link is free, while
the ending time-point is uncontrollable.2 The name for a network accommodating
this kind of uncertainty is typically given the suffix “with Uncertainty” (e.g., Simple
Temporal Network with Uncertainty (STNU) or Disjunctive Temporal Network
with Uncertainty (DTNU)).

For networks with this kind of uncertainty, the most important property is not
consistency, but controllability. In particular, is there a strategy for executing the
free (i.e., controllable) time-points such that all of the constraints in the network
will necessarily be satisfied no matter how the uncertain durations turn out? Three
levels of controllability have been defined: weak, strong and dynamic [47]. They
differ according to when the scheduler becomes aware of the durations of the
contingent links.

A network is strongly controllable if there is a fixed, unconditioned, non-reactive
assignment for the free time-points that will satisfy all of the constraints in the
network, regardless of how the uncontrollable durations of the contingent links
subsequently turn out. In effect, the scheduler must choose all execution times
before learning the duration of any contingent link. Such a solution corresponds
to a time-triggered program, where activities are started at fixed times that are
determined in advance of execution.

In sharp contrast, a network is weakly controllable if there is a strategy that
assigns values to the free time-points as a function of the uncontrollable durations
of all contingent links. Although the values for the uncontrollable durations need
not be known when generating the strategy, this version of controllability presumes
that all durations are provided to the executor in advance of execution.

2 Contingent links may also form chains or trees, in which case only the starting time-point
for the entire chain or tree is free, while the rest of the time-points are uncontrollable.

Dynamic Controllability via Timed Game Automata 9

This paper focuses on dynamic controllability, which is widely viewed as the
most relevant version of controllability for most real-world applications. A net-
work is dynamically controllable if it has a dynamic execution strategy that can
react, in real time, to contingent durations—but only after some positive delay.
In other words, the values that the execution strategy assigns to the free time-
points may depend on uncontrollable events—namely, the execution of contingent
time-points—but only if that information has already been observed in real time.
It cannot depend on advance knowledge of future uncontrollables.

Observations with Uncertain Outcomes

Another source of uncertainty arises from actions that generate information. For
example, a doctor measuring the blood pressure of a patient only discovers whether
the patient has high blood pressure after the measurement is taken. Temporal
networks accommodate this kind of uncertainty by including observation time-
points [41]. Each observation time-point has a corresponding Boolean propositional
letter. The execution of an observation time-point generates a truth value for the
corresponding propositional letter, in real time. Thus, an observation time-point
represents a Boolean condition that can be observed at run time. For this rea-
son, networks modeling this kind of uncertainty are called Conditional Temporal
Networks (e.g., Conditional Simple Temporal Networks (CSTNs) or Conditional
Simple Temporal Networks with Uncertainty (CSTNUs)). In Conditional Tempo-
ral Networks, some time-points and constraints may be applicable only in certain
scenarios (e.g., if a patient has high blood pressure and is in critical condition).

For Conditional Temporal Networks, the most important property has been
called dynamic consistency [41]. Intuitively, such a network is dynamically consis-
tent if there exists a dynamic strategy for executing its time-points such that all
relevant constraints will be satisfied no matter which combination of outcomes is
observed in real time. The execution decisions made by such a strategy may de-
pend on the outcomes of observation time-points that have occurred in the past,
but not on advance knowledge of such outcomes.

Some of the networks in this section accommodate both kinds of uncertainty
described above (i.e., contingent links and observation time-points). For such net-
works, the property of dynamic controllability is defined in a way that subsumes
the dynamic controllability of networks with contingent links and the dynamic
consistency of networks with observation time-points. This version of dynamic
controllability intuitively corresponds to the fundamental query presented earlier
for workflows. In particular, the existence of a dynamic strategy for scheduling
the free time-points corresponds to the existence of a feasible tactic for executing
the tasks of the workflow regardless of which paths are taken through the flow
and which durations are subsequently observed. This parallel has already been
analyzed elsewhere [26]. On top of that, the new CDTNU formalism also accom-
modates disjunctive constraints. The section concludes by defining the dynamic
controllability problem for CDTNUs.

10 Cimatti, Hunsberger, Micheli, Posenato and Roveri

A1 C1

A2 C2

X
[1, 3]

[1, 10]

[−3, 8]

[6, 12]

Tf = {A1, A2, X}; Tu = {C1, C2}
C = {C1 − C2 ∈ [−3, 8], C1 −X ∈ [6, 12]}
L = {(A1, 1, 3, C1), (A2, 1, 10, C2)}

Fig. 3 An STNU and its graphical representation. Contingent links are indicated by dashed
arrows. Note that the terminus of any contingent link is an uncontrollable (i.e., contingent)
time-point, indicated with doubly-circled solid nodes.

3.1 Simple Temporal Networks with Uncertainty

A Simple Temporal Network with Uncertainty (STNU) is a data structure for
representing and reasoning about temporal knowledge in domains where some
time-points are controlled by the executor (or agent) while others are controlled
by the environment.3 All temporal constraints in an STNU are simple (i.e., binary
and convex difference constraints).

Definition 1 A Simple Temporal Network with Uncertainty (STNU) is a tuple
(T , C,L) where:

1. T is a set of real-valued variables, called time-points, that is partitioned into
the sets, Tf and Tu, of free and uncontrollable time-points;

2. C is a set of simple temporal constraints, each of the form, Y −X ≤ δ, for some
X,Y ∈ T and δ ∈ R; and

3. L is a set of contingent links, each of the form, (A, `, u, C), where A ∈ T ,
C ∈ Tu, and 0 < ` < u <∞.

An expression, Y −X ∈ [a, b], abbreviates the pair of constraints, Y −X ≤ b and
X−Y ≤ −a. A contingent link, (A, `, u, C), represents a temporal interval from A
to C whose duration is uncontrollable, but bounded by C −A ∈ [`, u]. A is called
the activation time-point; C is called the contingent time-point. Fig. 3 shows a
sample STNU.

Dynamic Controllability of STNUs. Informally, an STNU is dynamically control-
lable (DC) if there exists a strategy for executing the free (or controllable) time-
points such that all constraints in the network will be satisfied no matter what
durations the environment “chooses” for the contingent links—within their spec-
ified bounds. The decisions that constitute such a strategy can depend only on
execution events that occurred in the past; however, the strategy can be dynamic

3 The agent and environment are not part of the formal semantics for STNUs; they are used
here for expository convenience.

Dynamic Controllability via Timed Game Automata 11

in that it may react—after a positive delay—to observations of contingent time-
points executing. Such strategies are called dynamic execution strategies [35]. Thus,
for an STNU, (T , C,L), the agent seeks a dynamic execution strategy for executing
the free time-points in Tf ⊆ T such that all constraints in C will necessarily be
satisfied no matter how the durations of the contingent links in L turn out—within
their specified bounds.

An agent’s execution strategy can be compactly defined in terms of real-time
execution decisions (RTEDs), where each RTED has one of two forms: wait or
(T, χf) [22]. A wait decision can be glossed as “wait until some contingent time-
point happens to execute.” A (T, χf) decision can be glossed as “if nothing happens
before time T (i.e., if no contingent time-point happens to execute before time T),
then I shall execute the (free) time-points in the set χf at time T .” The outcomes
for an RTED specify the range of execution events that could happen next, given
the limited information available to the agent. For example, one outcome of a
(T, χf) decision might be that a contingent time-point happens to execute at
some time ρ < T . In such a case, the agent might choose to react by adopting a
new decision. Another outcome might be that no contingent time-points execute
before time T , in which case the time-points in χf would be executed at time T .

In the case of the STNU in Fig. 3, the agent seeks a strategy for executing the
free time-points, A1, A2 and X, that will guarantee that the constraints among
C2, C1 and X are satisfied, no matter what durations the environment happens to
“choose” for the contingent links, (A1, 1, 3, C1) and (A2, 1, 10, C2). For example,
the agent might decide to execute A2 at time 0, and X at time 1, and then wait.
Should the environment happen to “choose” a duration of 5 for the contingent
link, (A2, 1, 10, C2), the agent would observe, at time 5, the execution of C2. The
agent might then react—after some positive delay—by, for example, deciding to
execute A1 at time 7. Later, the agent might observe the environment choosing to
execute C1 at 9. In this example, after all time-points have executed, C1 − C2 =
9 − 5 = 4 ∈ [−3, 8] and C1 − X = 9 − 1 = 8 ∈ [6, 12]; thus, all constraints in
C are satisfied and the agent has succeeded. It can be checked that this STNU
is dynamically controllable (i.e., there exists a strategy for the agent that ensures
success no matter how the environment behaves). The formal semantics for the
dynamic controllability of STNUs is given in Appendix A.

3.2 Conditional Simple Temporal Networks with Uncertainty

A Conditional Simple Temporal Network with Uncertainty (CSTNU) augments
an STNU to include observation time-points, each of which has a corresponding
propositional letter. The propositional letters represent Boolean conditions whose
truth values are observed in real time, during execution.4 In particular, the exe-
cution of an observation time-point generates a truth value for its corresponding
propositional letter. A scenario represents one possible set of truth values for all
of the propositional letters. A partial scenario specifies the truth values of the
propositional letters that have been observed so far.

4 The “C” in CSTNU stands for “Conditional”, as in the Conditional Temporal Problem
(CTP) introduced by Tsamardinos et al. [41]. A CSTNU extends both Conditional Simple
Temporal Networks (CSTNs) and STNUs.

12 Cimatti, Hunsberger, Micheli, Posenato and Roveri

Propositional labels comprising conjunctions of (positive or negative) proposi-
tional letters can be attached to time-points and temporal constraints in a CSTNU.
A time-point with a propositional label ` is only executed in scenarios where ` is
true. Similarly, a constraint labeled by ` only applies in scenarios where ` is true.

Definition 2 (Labels [41]) Given a set P of propositional letters, a label is any
(possibly empty) conjunction of (positive or negative) literals from P . The label
universe of P , denoted by P ∗, is the set of all labels with literals drawn from P .

Definition 3 (CSTNU [26]) A Conditional Simple Temporal Network with Un-
certainty (CSTNU) is a tuple, (T , C, L,OT ,O, P,L), where:

1. P is a set of propositional letters;
2. T is a set of time-points;
3. OT ⊆ T is a set of observation time-points;
4. O : P → OT is a bijection between observation time-points and propositional

letters;
5. L : T → P ∗ is a function assigning labels to time-points;
6. C is a set of labeled temporal constraints of the form, 〈Y −X ≤ δ, `〉, where
X,Y ∈ T , δ ∈ R, and ` ∈ P ∗; and

7. ignoring any labels, (T , C,L) is an STNU.5

For the subclass of workflow schemata having no disjunctive constraints (like
the two parallel, non-overlapping tasks of Fig. 1), Hunsberger et al. [26] presented
a method of encoding the temporal information from each workflow schema into
a CSTNU with the aim of rigorously analyzing and validating the temporal safety
of the workflow. In particular, the CSTNU for a given workflow schema is ob-
tained as follows. First, each task is represented by a contingent link. Second, each
connector is represented by a pair of (starting and ending) time-points, linked
by a duration constraint. Third, each arc is represented by a duration constraint.
Fourth, the ending time-point for each conditional split connector is represented
by an observation time-point for a proposition whose possible values correspond to
the different branching decisions of that connector.6 Fifth, the propositional label
for each time-point is obtained by accumulating the propositional literals along
the relevant pathway. Sixth, the propositional label for each temporal constraint
is obtained by conjoining the labels on the associated time-points. Finally, if the
duration range of a connector is [0, 0], then the connector can be represented by a
single time-point.

Fig. 4 shows the CSTNU obtained in this way for the portion of the workflow
from Fig. 1 that excludes the disjunctive Cardiological Evaluation and Neurological Eval-

uation tasks. To facilitate comparison with the original workflow, the contingent
links derived from the three workflow tasks have been highlighted in rounded gray
rectangles. The observation time-point E yields the proposition p (i.e., Emerg?); and
A yields the proposition q (i.e., Age > 70?). The contingent link (ETs, 8, 10, ETe)
corresponds to the Emergency Treatment task; (EETs, 10, 20, EETe) corresponds to
Elder Emergency Treatment; and (STs, 10, 30, STe) corresponds to Standard Treatment.
The CSTNU formalism is useful when the modeled situation has multiple possible

5 There are some additional “well-definedness” conditions on CSTNUs that are omitted for
expository convenience [26].

6 Without loss of generality, this paper considers only binary branching in CSTNUs.

Dynamic Controllability via Timed Game Automata 13

E : p

A : q ETs ETe

EETs EETe

STs STe

[8, 10]

[10, 20]

[10, 30]

[0
, 1

],
p

[0, 5], p¬q

[0, 10], pq

[0, 10],¬p

[10, 25], pq

[7, 14], p¬q

p p¬q p¬q

pq pq

¬p ¬p

Fig. 4 The CSTNU obtained from the “Conditional” portion of the workflow from
Fig. 1. Circles represent time-points (or nodes); each observation node includes a
time-point:proposition indicator (e.g., A : q); propositional labels for time-points are writ-
ten below the time-points; and rounded rectangles are used to highlight the contingent links
derived from workflow tasks.

evolutions depending on observations made at runtime. While STNUs are suit-
able for representing temporal plans, CSTNUs can be used to model conditional
temporal plans.

Dynamic Controllability of CSTNUs. Hunsberger et al. [26] define the critical
property of dynamic controllability for CSTNUs, generalizing both the dynamic
controllability of STNUs [35] and the dynamic consistency of a CTP [41]. In brief,
a CSTNU is dynamically controllable if there exists a strategy for executing the
free time-points in the network such that all constraints in C are guaranteed to
be satisfied no matter how the durations of the contingent links turn out, and no
matter how the observations of the various propositions turn out, in real time—
with the caveat that in any given scenario, only the time-points whose labels
are true in that scenario need to be executed, and only the constraints whose
labels are true in that scenario need to be satisfied. Subsequent work yielded a
variety of constraint propagation rules for CSTNUs, which led to a sound-but-
not-complete DC-checking algorithm for CSTNUs [15]. Since the temporal safety
of a workflow schema corresponds directly to the dynamic controllability of the
underlying CSTNU, providing a sound-and-complete DC-checking algorithm for
CSTNUs remained an important open problem.

3.3 Disjunctive Temporal Networks with Uncertainty

Another important way of extending STNUs is to include disjunctive constraints.
Disjunctions frequently arise in practice. For example, workflows in the health-
care domain frequently involve activities whose executions cannot overlap due to

14 Cimatti, Hunsberger, Micheli, Posenato and Roveri

Cs Ce

Ns Ne

[5, 20]

[5, 10]

[0,∞
)

[0,
∞)

∨

Fig. 5 The DTNU obtained from the “Disjunctive” portion of the workflow from Fig. 1. The
two constraints (Ne−Cs ≤ 0) and (Ce−Ns ≤ 0) are part of a single disjunctive free constraint.

conflicting requirements, as illustrated in Fig. 1, where the Cardiological Evaluation

and Neurological Evaluation tasks can be executed in any order, but cannot over-
lap. To retain maximal flexibility, it is desirable to constrain these tasks to be
non-overlapping without imposing any a priori order on them. An STNU cannot
accommodate such disjunctive constraints. However, similarly to the Disjunctive
Temporal Problem (DTP) [40], Disjunctive Temporal Networks with Uncertainty
(DTNUs) [44] can accommodate arbitrary disjunctions in the free constraints and
binary disjunctions in the contingent constraints.

Definition 4 (DTNU) A DTNU is a triple, (T , C,L), where:

1. T is a set of real-valued variables called time-points, partitioned into the sets,
Tf and Tu, of free and uncontrollable time-points;

2. C is a set of constraints, each obtained as the arbitrary Boolean combination
of atoms in the form, Y −X ≤ δ, for some X,Y ∈ T and δ ∈ R; and

3. L is a set of contingent links, each of the form, (A,B, C), where A ∈ T , C ∈ Tu,
and B is a finite set of pairs (`, u) such that 0 < ` < u <∞; and for any distinct
pairs, (`i, ui) and (`j , uj) in B, either `i > uj or ui < `j .

Generalizing the contingent links in an STNU, a contingent link (A,B, C) in
a DTNU represents a temporal interval from A to C whose duration, C − A, is
uncontrollable, but guaranteed to lie within a union of disjoint intervals. In par-
ticular, if B = {(`1, u1), · · · , (`n, un)}, then C−A is guaranteed to fall somewhere
within the set [`1, u1] ∪ · · · ∪ [`n, un]. Although contingent durations in a DTNU
can be disjunctive in this way, the execution semantics ensures that the choices
made by the environment for distinct contingent durations are independent.

This is useful for modeling periodic activities whose windows of opportunity
have certain degrees of uncertainty. An STNU is the particular case of a DTNU in
which all of the B sets are singletons, and conjunction is the only allowed Boolean
operator in the constraints belonging to C.

The example of the parallel Cardiological Evaluation and Neurological Evaluation tasks
can be encoded as a DTNU (Tf∪Tu, C,L) as depicted in Fig. 5. First, let Cs, Ce, Ns
and Ne be the starting and ending times for these two tasks; then, Tf =̇ {Cs, Ns}
and Tu =̇ {Ce, Ne}. The constraint set C contains just one disjunctive constraint:

C =̇ {(Ne − Cs ≤ 0) ∨ (Ce −Ns ≤ 0)}.

Dynamic Controllability via Timed Game Automata 15

Finally the set of contingent links is given by:

L =̇ {(Cs, {[5, 20]}, Ce), (Ns, {[5, 10]}, Ne)}.

Dynamic Controllability of DTNUs. The dynamic controllability problem for DT-
NUs is defined analogously to the STNU case [38,43]. Disjunctive free constraints
simply give more freedom to the agent, while disjunctions in contingent constraints
allow the environment to choose from among a set of intervals. However, these ex-
tensions do not dramatically change the semantics of dynamic controllability.

3.4 Conditional Disjunctive Temporal Networks with Uncertainty

The CSTNU and DTNU formalisms extend STNUs in different directions. On the
one hand, a CSTNU includes observation time-points to model discrete observa-
tions at run-time; on the other hand, a DTNU allows disjunctive constraints that
can model non-convex durations, non-overlapping durations, and all of the other
temporal relations from Allen’s interval algebra [2]. These two extensions are both
interesting and useful from a practical standpoint, as illustrated by Fig. 1. There-
fore, this paper introduces a new formalism that accommodates all of the features
from both CSTNUs and DTNUs and, thus, is expressive enough to faithfully rep-
resent all of the temporal information from the workflow depicted in Fig. 1.

The new formalism is called a Conditional Disjunctive Temporal Network with
Uncertainty (CDTNU), defined below. It is devised in such a way that it directly
subsumes both CSTNUs and DTNUs. Thus, every CSTNU is a CDTNU, and
every DTNU is a CDTNU.

Definition 5 (CDTNU) A Conditional Disjunctive Temporal Network with Un-
certainty (CDTNU) is a tuple, (T , C, L,OT ,O, P,L), where:

1. P is a set of propositional letters;
2. T is a set of time-points;
3. OT ⊆ T is a set of observation time-points;
4. O : P → OT is a bijection between observation time-points and propositional

letters;
5. L : T → P ∗ is a function that assigns propositional labels to time-points;
6. C is a set of labeled, disjunctive temporal constraints of the form, 〈φ, `〉, where
` ∈ P ∗, and φ is an arbitrary Boolean combination of atoms, each of the form,
Y −X ≤ δ, for some X,Y ∈ T and δ ∈ R; and

7. ignoring any labels, (T , C,L) is a DTNU.

Fig. 6 depicts a CDTNU that effectively models the workflow from Fig. 1.
Note that edges with no label are required to hold in every scenario; and disjunc-
tive constraints can be labeled, although the sample CDTNU does not show this
possibility.

Dynamic Controllability of CDTNUs. The dynamic controllability problem for
CDTNUs is analogous to the DC problem for CSTNUs, with the important dif-
ference that a CDTNU can have non-convex binary disjunctions in the contingent
links (as in a DTNU) that need to be considered for dynamic execution strategies.
A complete formalization of the DC problem for CDTNUs is given in Appendix B.

16 Cimatti, Hunsberger, Micheli, Posenato and Roveri

Cs

S

Ce

Ns Ne

E : p

A : q ETs ETe

EETs EETe

STs STe

[8, 10]

[10, 20]

[10, 30]

[0
, 1

],
p

[0, 5], p¬q

[0, 10], pq

[0, 10],¬p

[10, 25], pq

[7, 14], p¬q

p p¬q p¬q

pq pq

¬p ¬p

[5, 20]

[5, 10]

[0,∞
)

[0,
∞)

∨

[0,
∞)

[0,∞)

[0,∞)

[0,
∞)

Fig. 6 The CDTNU obtained from the complete workflow from Fig. 1. The newly introduced
node S represents the start of the workflow.

4 Reducing Dynamic Controllability to TGA Reachability

This section presents a general approach to solve the dynamic controllability prob-
lem for all of the temporal networks discussed above. The basic idea is to reduce
the DC-checking problem for a temporal network to a reachability game for a
Timed Game Automaton (TGA) obtained via a linear encoding procedure. Since
the reachability problem for TGAs is decidable and algorithms have been devel-
oped to solve it, this reduction constitutes a viable and novel solution approach for
the open problems of determining the dynamic controllability of CSTNUs, DTNUs
and CDTNUs.

This section begins by introducing the relevant background from the TGA
literature. It then presents, for each kind of temporal network, an encoding of that
network into a TGA such that the temporal network is dynamically controllable
if and only if the reachability game for the corresponding TGA is solvable.

4.1 Timed Game Automata

A finite automaton [31] comprises a finite set of states (or locations) and a finite
set of labeled transitions (or actions). One of the states is called the initial (or
starting) state; a distinguished subset of states comprise the final (or accepting)
states. Each labeled transition specifies a legal move from one state to another.

A Timed Automaton (TA) [3] augments a finite automaton to include real-
valued clocks. Each transition in a TA may include temporal constraints, called
guards, that disable the transition if the current clock values do not satisfy those
constraints. Each transition may also include clock resets that cause specified
clocks to be reset to 0 whenever the transition is taken. Finally, each location may
include an invariant—that is, a constraint specifying the conditions under which
the automaton may stay in that location. Definition 6 formalizes this structure.

Dynamic Controllability via Timed Game Automata 17

X Y

〈cC ≥ 1; pass; {cC}〉

〈cC ≥ 5; gain; {cC}〉

cC ≤ 3

Fig. 7 A sample timed automaton.

Definition 6 (Timed Automaton) A Timed Automaton (TA) is a tuple, A =
(L, l0,Act ,X , E, Inv), where:

1. L is a finite set of locations;
2. l0 ∈ L is the initial location;
3. Act is a set of actions;
4. X is a finite set of real-valued clocks;
5. E ⊆ L×H∩k (X)×Act × 2X × L is a finite set of transitions; and
6. Inv : L→ H∩k (X) associates an invariant to each location.

Elements in H∩k (X) are conjunctions of constraints of the form, x ./ k or y−x ./ k,
where x, y ∈ X , k is an integer, and ./ is one of <,≤,=, > or ≥.

Fig. 7 shows a sample TA. The TA has one clock, cC. The entering arrow with no
predecessor node indicates that X is the initial location. X’s invariant is cC ≤ 3.
Each transition has a label, 〈G; N ; R〉, where G is the guard, N is a name for the
transition, and R is the set of clocks it resets. A run starts in the initial location, X,
with cC = 0. X’s invariant, cC ≤ 3, and the guard, cC ≥ 1, on the pass transition,
together ensure that the TA must take the transition from X to Y at some time
when 1 ≤ cC ≤ 3. When taken, that transition resets cC to 0. Afterward, the gain

transition, whose guard is cC ≥ 5, could be taken back to X at any time for which
cC ≥ 5. If taken, the gain transition also resets cC to 0. However, since Y has no
invariant, the TA could instead remain at Y forever.

A Timed Game Automaton (TGA) in turn generalizes a TA by partitioning
the set of transitions into controllable and uncontrollable transitions. A TGA can
be used to model a two-player game between an agent and the environment, where
the agent controls the controllable transitions, and the environment controls the
uncontrollable transitions. TGAs are formally defined in Definition 7.

Definition 7 (Timed Game Automaton) A Timed Game Automaton (TGA)
is a Timed Automaton whose set of actions, Act , is partitioned into controllable
(Actc) and uncontrollable (Actu) actions.

Fig. 8 shows a TGA with three locations: agnes, vera and goal, where vera

is the initial location. It has four clocks: cA, cC, ĉ and cδ. The solid arrows rep-
resent controllable transitions; the dashed arrow represents the one uncontrol-
lable transition. For example, the transition from agnes to itself has the label,
〈cA = ĉ; sA; {cA}〉, which specifies that it can only be taken if cA and ĉ have the
same value; and that taking this transition resets cA to 0. Consider the following
possible run of this TGA. It begins at the initial location vera, with all clocks
set to 0. Five units of time later, when all clocks read 5, the agent takes the gain

transition to agnes. (The guard is satisfied; and no clocks are reset.) Then, at time
6, the agent takes the sA transition, which causes cA to be reset to 0. Then, at

18 Cimatti, Hunsberger, Micheli, Posenato and Roveri

veraagnesgoal
〈cC < ĉ; win; ∅〉

〈>; pass; {cδ}〉

〈cδ > 0; gain; ∅〉

〈cC = ĉ ∧ cA < ĉ; sC; {cC}〉〈cA = ĉ; sA; {cA}〉

Fig. 8 A sample Timed Game Automaton. Controllable transitions (belonging to Actc) are
solid, while uncontrollable transitions (belonging to Actu) are dashed.

time 7, the agent takes the pass transition back to vera, which resets cδ back to
0. At this point, cδ = 0; cA = 1; and cC = ĉ = 7. Thus, the environment can take
the sC transition from vera to itself, resetting cC to 0. Then, at time 10, the agent
takes the gain transition back to agnes, and at 11 the win transition to the goal

state.
In what follows, the common practice of labeling certain locations urgent is

used. An urgent location is one in which players are prevented from waiting. Mak-
ing a location ` urgent is equivalent to: (1) introducing a new clock c that is reset
by every transition entering `; and (2) conjoining a new invariant, c ≤ 0, to `.

For any TGA, different kinds of games can be modeled [6]. In a reachability
game, the controller (or agent) seeks to move the TGA into one of the winning
locations within a finite amount of time. In the avoidance game, the controller seeks
to prevent the TGA from entering a certain set of locations. In this paper we use
memory-less strategies, since they have been shown to be sufficient for reachability
and avoidance games [32,6]. Intuitively, a memory-less strategy associates a state
of the system to either an action to be executed or a special symbol λ that stands
for “wait”: the controller shall not take any controllable transition, it just needs to
wait the opponent move (i.e., do nothing, wait until an uncontrollable transition
is taken by the opponent).

Definition 8 For a TGA, (L, l0,Act ,X , E, Inv), a memory-less strategy is a map-
ping f : L×RX>=0 → Actc ∪ λ.

Further details on the semantics for TGAs are available from Maler et al. [32].

4.2 TGA Encodings

This section presents a series of TGA encodings, one for each class of temporal
network introduced in Section 3.

4.2.1 STNU-to-TGA Encoding

Given any STNU S = (T , C,L), the goal is to generate a corresponding TGA
TS = (L, l0,Act ,X , E, Inv), and a winning condition φ, such that the STNU S
is dynamically controllable if and only if the TGA TS admits a counter-strategy
for φ. An important—and unexpected—part of this STNU-to-TGA encoding is
that uncontrollable TGA transitions are used to model the execution of the free
time-points in S, and controllable TGA transitions are used to model the execution

Dynamic Controllability via Timed Game Automata 19

of the uncontrollable time-points in S. Thus, the traditional use of TGAs where the
environment is associated with uncontrollable transitions has been inverted. (That
is why a counter-strategy is sought.) The underlying reason is that according to
the STNU semantics, when both players attempt to make transitions at the same
time, Agnes (the agent) must play before Vera (the environment), whereas in the
TGA semantics, the uncontrollable transition would go first.

For this encoding, the set of locations is: L =̇ {agnes, vera, goal}, where agnes

is marked urgent. Note that L has only three locations, regardless of the number
of time-points in the STNU. Intuitively, agnes represents a state in which Agnes
can execute one or more free time-points; vera represents a state in which Vera
can execute one or more contingent time-points; and goal represents a state in
which all of the constraints have been satisfied and the game is over (and agnes

wins, having successfully scheduled all of the time-points, while satisfying all of
the constraints). The initial location of the TGA is vera (i.e., l0 =̇ vera).

The set of clocks is: X =̇ {ĉ, cδ}∪{cX |X ∈ T }. All clocks start at 0. The clock
ĉ is never reset; it simply measures global time. The clock cδ is used to ensure
that there will always be a positive delay between the execution of any contingent
time-point (by Vera) and any reaction by Agnes, which is crucial for capturing
the STNU semantics. Finally, for each time-point X ∈ T , there is a corresponding
clock cX. That clock is reset at most once each run, at the instant X is executed.
It follows that any time-point X has been executed if and only if cX < ĉ. (Since
the initial state is vera, no time-point can be executed at 0.) Also, after being
executed, the execution time for X is forever equal to ĉ− cX.

The sets of controllable and uncontrollable actions are defined as follows. First,
the controllable actions (for Vera) consist of one action for each contingent time-
point in S, as follows: Actc =̇ {exX |X ∈ Tu}. Each action in this set represents the
execution of the corresponding time-point. The uncontrollable actions (for Agnes)
include more options: Actu =̇ A1 ∪ A2 ∪ A3, where:

A1 = {exX |X ∈ Tf};
A2 = {cvC | (A, `, u, C) ∈ L}; and
A3 = {gain, pass, win}.

A1 contains one execution action for each free time-point. A2 contains one action
for each contingent link; these actions are only enabled if Vera violates the bounds
on any of her contingent links. gain and pass model the interplay between the
execution of time-points by Agnes and Vera; win is used at the end when all
time-points have been executed and all constraints have been satisfied.

The transition relation, E, for the TGA encoding of an STNU is demonstrated
in Fig. 9, using the sample STNU from Fig. 3. For each free time-point X, there is
a transition from agnes to agnes labeled by 〈cX = ĉ; exX; {cX}〉, which represents
the execution of X by Agnes. The guard, cX = ĉ (i.e., X not yet executed),
ensures that this transition will be taken at most once per run. The set, {cX},
stipulates that the clock cX will be reset by this transition, signalling that X has
been executed. Similarly, for each contingent link, (A, `, u, C), there is a transition
from vera to vera labeled by 〈Σ(cC, cA, ĉ); exC; {cC, cδ}〉, which represents the
execution of C by Vera. The guard, Σ(cC, cA, ĉ) =̇ (cA < ĉ) ∧ (cC = ĉ) ∧ (cA ≥
`) ∧ (cA ≤ u), ensures that this transition can only be taken when the link is
currently activated and its duration would fall within [`, u]. In addition, for each
contingent link, (A, `, u, C), there is a transition from agnes to goal labeled by

20 Cimatti, Hunsberger, Micheli, Posenato and Roveri

veraagnesgoal
〈Ψ ; win; ∅〉

〈>; pass; {cδ}〉

〈cδ > 0; gain; ∅〉

〈Σ(cC1, cA1, ĉ); exC1 ; {cC1, cδ}〉

〈Σ(cC2, cA2, ĉ); exC2 ; {cC2, cδ}〉

〈cA1 = ĉ; exA1 ; {cA1}〉 〈cX = ĉ; exX; {cX}〉

〈cA2 = ĉ; exA2 ; {cA2}〉

〈Φ(cC1, cA1, ĉ); cvC1 ; ∅〉

〈Φ(cC2, cA2, ĉ); cvC2 ; ∅〉

Fig. 9 Encoding the STNU from Fig. 3 into a TGA. Solid arrows represent controllable
transitions (for Vera); dashed arrows uncontrollable transitions (for Agnes). The doubly-circled
agnes location is urgent; the initial location is vera.

〈ΦC(cA, cC, ĉ); cvC; ∅〉, enabling Agnes to move to goal should Vera ever violate
the bounds on that link by failing to execute C. Its guard is: ΦC(cA, cC, ĉ) =̇ (cA <
ĉ)∧ (cA > u)∧ (cC = ĉ). Next, if t is the vector of clocks cX such that X ∈ T , the
transition from agnes to goal labeled by 〈Ψ(t, ĉ); win; ∅〉 signals the end of the
game. Ψ(t, ĉ) models that all time-points have been executed and all constraints
are satisfied: Ψ(t, ĉ)=̇

∧
x∈T (cX < ĉ) ∧

∧
Y−X≤k(cX − cY ≤ k). Last, to model

the interplay between the players, there are two more transitions. The transition
from vera to agnes labeled by 〈cδ > 0; gain; ∅〉 enables Agnes to gain control
for the purpose of executing some free time-points—but only after some positive
delay since Vera last executed a contingent time-point. The transition from agnes

to vera labeled by 〈>; pass; {cδ}〉 enables Agnes to immediately pass back to
vera, once she has finished executing her chosen time-points. Crucially, no time
elapses from the instant Agnes leaves vera to the instant she returns, because
agnes is an urgent state. From Vera’s perspective, the winning condition φ of the
(safety) game is to avoid the goal state. A counter-strategy for Agnes foils Vera
by ensuring that goal can be reached.

The correctness of the STNU-to-TGA encoding is proven in appendix C.

4.2.2 CSTNU-to-TGA Encoding

We now consider CSTNUs and extend the STNU encoding to accommodate obser-
vations and Boolean propositions. We retain the structure of the STNU encoding,
by modifying only the way free constraints are represented and by adding a suit-
able encoding for the Boolean propositions that are decided by Vera. A CSTNU
instance can be seen as an STNU in which some parts can be disabled depend-
ing on the observations that become visible during the execution. As described
in Section 3.2, an observation node is a time-point whose execution generates a
truth value for an associated proposition (equivalently, a Boolean variable). For
example, let X be an observation time-point whose execution establishes the truth
value of the proposition p. Note that, before X is executed (i.e., while cX = ĉ), the
truth value of p is unknown, but after p is executed, its truth value must be either
true or false. This feature can be accommodated in a TGA by introducing a new
clock bP (which stands for “Boolean p”), whose value is meaningful only after X

Dynamic Controllability via Timed Game Automata 21

veraagnes

〈>; pass; {cδ}〉

〈cδ > 0; gain; ∅〉

〈Υ (cX, ĉ, bP); resetP; {bP}〉

〈cX = ĉ; exX; {cX}〉

Fig. 10 An observation node X whose associated proposition is p. The loop in agnes executes
the time point X, while the one in vera sets p to false. It is up to the environment to decide
whether to take the loop in vera or not.

has been executed. After X has executed, if bP = ĉ, then p shall be interpreted as
being true; but if bP < ĉ (i.e., if bP has been reset), then p shall be interpreted as
being false.

As shown in Fig. 10, at the instant X is executed by Agnes, the guard on the
resetP transition (a loop at vera) gives Vera precisely one opportunity to reset
bP (i.e., to make p false). The guard on resetP is:

Υ (cX, ĉ, bP) =̇ (cX < ĉ) ∧ (cX = 0) ∧ (bP = ĉ)

which represents that X has been executed now, but bP has not yet been reset.
If Vera does not take this opportunity, then bP shall forever be equal to ĉ (i.e., p
shall forever be true).

Next, the win transition that represents the “all time-points executed and all
constraints satisfied” condition is changed so that it emanates not from the agnes

location, but from the vera location—and with a guard that includes the constraint
cδ > 0. This is done to ensure that Vera always gets her opportunity to set the
truth value of any proposition corresponding to a just executed observation time-
point. (Otherwise, Agnes might surreptitiously execute an observation time-point
and then take the win transition before Vera has a chance to set the truth value
of the corresponding proposition.)

Finally, since the nodes and constraints in a CSTNU can be labeled by conjunc-
tions of (positive or negative) propositional letters, the “all time-points executed
and all constraints satisfied” condition must be represented in a new way. To see
this, consider the following example. Suppose that the time-points, R and S, and
the constraint, S−R ≤ 5, are labeled by p¬q (i.e., p∧ (¬q)). Suppose further that
X and Y are the observation time-points for p and q, respectively. Then, in any
scenario in which X and Y are both executed, and p is true, and q is false, success
requires that both R and S be executed, and that S − R ≤ 5 be satisfied. This
can be represented by the following conditional constraint:

((cX < ĉ)∧ (cY < ĉ)∧ (bP = ĉ)∧ (bQ < ĉ))→ ((cR < ĉ)∧ (cS < ĉ)∧ (cR−cS ≤ 5))

which is equivalent to:

¬(cX < ĉ)∨¬(cY < ĉ)∨¬(bP = ĉ)∨¬(bQ < ĉ)∨((cR < ĉ)∧(cS < ĉ)∧(cR−cS ≤ 5))

22 Cimatti, Hunsberger, Micheli, Posenato and Roveri

vera goal

〈(cR < ĉ) ∧ (cS < ĉ) ∧ (cR− cS ≤ 5); sat5; ∅〉

〈cX = ĉ; sat1; ∅〉

〈cY = ĉ; sat2; ∅〉

〈bP < ĉ; sat3; ∅〉

〈bQ = ĉ; sat4; ∅〉

Fig. 11 The transitions capturing the sample “all time-points executed and all constraints
satisfied” constraint in the scenario p¬q, discussed in the text.

vera · · · L0 L1 L2 LM−1 LM · · · goal· · · · · · · · ·· · ·

Fig. 12 Using a sequence of locations in a TGA to accommodate the “all time-points executed
and all constraints satisfied” condition for a CSTNU.

Given that no clock’s value can ever exceed that of the global clock ĉ, this further
simplifies to:

(cX = ĉ) ∨ (cY = ĉ) ∨ (bP < ĉ) ∨ (bQ = ĉ) ∨ ((cR < ĉ) ∧ (cS < ĉ) ∧ (cR− cS ≤ 5))

Since the guards on TGA transitions do not allow disjunctions, the above condi-
tion can be represented using five separate transitions, one for each disjunct, as
illustrated in Fig. 11.

In general, suppose that `1, `2, . . . , `M are the M distinct labels that appear
in some CSTNU. (Typically, M is much smaller than the number of labels in
the label universe, P ∗.) For each i, let τi be the set of time-points labeled by `i,
and Ci the set of constraints labeled by `i. In addition, for each i, let θi be the
conditional constraint that can be glossed as: “In scenarios where `i is true, all
of the time-points in τi must be executed, and all of the constraints in Ci must
be satisfied,” as discussed in the preceding example. The desired “all time-points
executed and all constraints satisfied” condition is then the conjunction: ∧Mi=1 θi.
This conjunction of conditional constraints can be effectively accommodated in
the TGA using a sequence of (M + 1) urgent locations starting from L0 = vera,
and ending at LM = goal, as follows:

(vera = L0) L1 L2 . . . (LM = goal)

For each i, there is a set of transitions from Li−1 to Li that together represent
the conditional constraint θi, as illustrated in Fig. 12. If, in some scenario, Agnes
can follow a path through this network of transitions from vera to goal, then
all of the relevant time-points must have been executed, and all of the relevant
constraints must have been satisfied.

Fig. 13 illustrates the TGA that is obtained in this way from the sample
CSTNU seen earlier in Fig. 4. In the figure, the sequence of locations, Li, have

Dynamic Controllability via Timed Game Automata 23

a
g
n
e
s

v
e
r
a

g
o
a
l

L
∅

L
p
q

L
p
¬
q

L
p

〈>
;
p
a
s
s
;
{c
δ
}〉

〈c
δ
>

0
;
g
a
i
n
;
∅〉

c
E
E
T
s
<

ĉ
∧
c
E
E
T
s
>

2
0
∧
c
E
E
T
e

=
ĉ

c
E
T
s
<

ĉ
∧
c
E
T
s
>

1
0
∧
c
E
T
e

=
ĉ

c
S
T
s
<

ĉ
∧
c
S
T
s
>

3
0
∧
c
S
T
e

=
ĉ

c
E
<

ĉ
∧
c
δ
>

0

b
P
<

ĉc
A
<

ĉ
∧
c
E
−

c
A
≥

0
∧
c
E
−

c
A
≤

1

c
E
T
s
<

ĉ
∧

c
E
T
e
<

ĉ
∧

c
A
−

c
E
T
s
≥

0
∧

c
A
−

c
E
T
s
≤

5
∧

c
E
−

c
E
T
e
≥

7
∧

c
E
−

c
E
T
e
≤

1
4

c
A

=
ĉ

b
P
<

ĉ

b
Q

=
ĉ

c
E
E
T
s
<

ĉ
∧
c
E
E
T
e
<

ĉ
∧

c
A
−
c
E
E
T
s
≥

0
∧
c
A
−
c
E
E
T
s
≤

1
0
∧

c
E
−
c
E
E
T
e
≥

1
0
∧
c
E
−
c
E
E
T
e
≤

2
5

cA
=
ĉ

bP
<
ĉ

b
Q
<

ĉ

c
S
T
s
<

ĉ
∧
c
S
T
e
<

ĉ
∧

c
E
−
c
S
T
s
≥

0
∧
c
E
−
c
S
T
s
≤

1
0

b
P

=
ĉ

〈c
E

=
ĉ
;
e
x
E
;
{c

E
}〉

〈c
A

=
ĉ
;
e
x
A
;
{c

A
}〉

〈c
S
T
s

=
ĉ
;
e
x
S
T
s
;
{c
S
T
s
}〉

〈c
E
T
s

=
ĉ
;
e
x
E
T
s
;
{c

E
T
s
}〉

〈c
E
E
T
s

=
ĉ
;
e
x
E
E
T
s
;
{c

E
E
T
s
}〉

〈c
E
T
s
<

ĉ
∧
c
E
T
e

=
ĉ
∧
c
E
T
s
≥

8
∧
c
E
T
s
≤

1
0
;
e
x
E
T
e
;
{c

E
T
e
,c
δ
}〉

〈c
E
E
T
s
<

ĉ
∧
c
E
E
T
e

=
ĉ
∧
c
E
E
T
s
≥

1
0
∧
c
E
E
T
s
≤

2
0
;
e
x
E
E
T
e
;
{c

E
E
T
e
,c
δ
}〉

〈c
S
T
s
<

ĉ
∧
c
S
T
e

=
ĉ
∧
c
S
T
s
≥

1
0
∧
c
S
T
s
≤

3
0
;
e
x
S
T
e
;
{c

S
T
e
,c
δ
}〉

〈c
E
<

ĉ
∧
c
E

=
0
∧
b
P

=
ĉ
;
r
e
s
e
t
P
;
{b

P
,c
δ
}〉

〈c
A
<

ĉ
∧
c
A

=
0
∧
b
Q

=
ĉ
;
r
e
s
e
t
Q
;
{b

Q
,c
δ
}〉

Fig. 13 The TGA derived from the sample CSTNU from Fig. 4. In transitions leading from
vera to goal, and from agnes to goal, the names and clock resets have been omitted.

24 Cimatti, Hunsberger, Micheli, Posenato and Roveri

been renamed to show the associated labels, as follows:

vera L∅ Lp Lp¬q Lpq (L¬p = goal)

In addition, to reduce the clutter, only the guards are shown on the transitions in
this sequence.

4.2.3 DTNU-to-TGA Encoding

DTNUs generalize STNUs in two different dimensions. First, the durations of con-
tingent links can be constrained to lie within a union of disjoint intervals. Second,
the free constraints can comprise arbitrary Boolean combinations of difference
constraints. This section shows how a DTNU (T , C,L) can be translated into an
equivalent TGA by making two modifications to the STNU-to-TGA translation
presented in Section 4.2.1. First, if the duration for a contingent link is constrained
to lie within one of n disjoint intervals, then there will be n corresponding loops
at the vera location, where the guard for each loop effectively specifies one of the
allowed intervals for that contingent duration. Second, the “all time-points exe-
cuted and all constraints satisfied” transition to the goal location is represented
by alternative pathways through a sequence of locations from vera to goal, using
a technique that generalizes that shown for CSTNUs in the preceding section.

To begin, as for an STNU, each free time-point X will have a correspond-
ing transition, (agnes, cX = cG, exX, {cX}, agnes), that represents the execution of
X by Agnes. However, for each disjunctive contingent link, (A,B, C), where B=̇
{(`1, u1), · · · , (`n, un)}, there are n loop transitions: (vera, Σ(cC, cA, cG, li, ui), exC,
{cC, cδ}, vera), for i ∈ [1, n]. They represent the possible executions of C by Vera.
The respective guards,

Σ(cC, cA, cG, li, ui) =̇(cA < cG) ∧ (cC = cG) ∧ (cA ≥ li) ∧ (cA ≤ ui)
ensure that (one of) these transitions can be taken only when the link is currently
activated and its duration would fall within one of the allowed intervals of B. In ad-
dition, for each contingent constraint, there is a transition, (agnes, ΦC(cA, cC, cG,
maxi(ui)), cvC, ∅, goal) that allows Agnes to win the game if Vera refuses to sched-
ule an uncontrollable time-point within the maximum allowed bound, maxi(ui).
The guard is expressed by ΦC(cA, cC, cG, u) =̇ (cA < cG)∧ (cA > u)∧ (cC = cG), as
in the STNU case. The interplay between the players, governed by the pass and
gain transitions, is identical to the STNU case.

Next, the TGA must accommodate the arbitrary Boolean combinations of con-
straints in C. In principle, we would like to have a transition, (agnes, Ω(c, cG), win,
∅, goal) that signals the end of the game, where Ω(c, cG) encodes the fact that all
time-points have been executed and all constraints satisfied, and c is the set of
clocks associated with the time-points.

First, let Λ =̇
∧|C|
i=1 Ci be the first-order logic formula encoding all the con-

straints in C. Then, let Ω(c, cG) be the formula that results from replacing each
atomic constraint, X − Y ≤ δ, with the equivalent clock constraint, cY − cX ≤ δ,
while preserving the Boolean structure of the formula:7

Ω(c, cG) =̇ Λ[(X − Y ≤ δ)/(cY− cX ≤ δ)].
7 Here we use the classical notation φ[x/y] for the substitution of the term x for the term y

in the formula φ. However, we slightly abuse the notation by assuming that the substitution
is applied to all atoms of the formula.

Dynamic Controllability via Timed Game Automata 25

agnes goal

〈cCs < ĉ ∧ · · · ∧ cNe < ĉ ∧ cCs − cNe ≤ 0, t1, ∅〉

〈cCs < ĉ ∧ · · · ∧ cNe < ĉ ∧ cNs − cCe ≤ 0, t2, ∅〉

Fig. 14 The DNF encoding of the guards on constraints from agnes to goal for the sample
DTNU in Fig. 5.

For the DTNU from Fig. 1 that represents the non-overlapping cardiological
and neurological evaluation tasks, Λ consists solely of the one constraint in C:

Λ =̇ (Ne − Cs ≤ 0) ∨ (Ce −Ns ≤ 0).

Therefore, Ω(cCs, cCe, cNs, cNe, cG) is equal to:

(cCs − cNe ≤ 0) ∨ (cNs − cCe ≤ 0).

However, it is not always possible to directly use the formula Ω(c, cG) as a
guard for the transition from agnes to goal because the definition of a TGA
restricts the language of the guards to be purely conjunctive. For this reason,
we aim at building a piece of automaton—possibly adding new locations—that
connects agnes to goal in such a way that the free constraints are equivalent to
the disjunction of the conjunction of the guards along each path from agnes to
goal. There are several ways in which this can be done.

Disjunctive Normal Form. Similarly to what has been done for CSTNUs, we can
create a set of transitions from agnes to goal such that each pathway from agnes

to goal can be taken if and only if Ω(c, cG) is satisfied. This is always possible, since
alternative transitions emanating from a single location are equivalent to a single
transition with a disjunctive guard. Thus, all we have to do is convert Ω(c, cG)
into Disjunctive Normal Form (DNF) and create a separate transition from agnes

to goal for every disjunct. In this setting, negation of atomic constraints is not a
problem because ¬(cY−cX ≤ δ) is equivalent to cY−cX > δ, which is allowed in the
guards of a TGA. As for the names of the actions, we assign to each action a unique
new name. It is easy to see that there exists a path from agnes to goal if and only
if the free constraints are satisfied, because one disjunct of the DNF is satisfied.
The main drawback of this technique is that, for a general formula, the number
of disjuncts in the DNF is exponential, and thus the encoding is exponential.
Nevertheless, this constitutes a sound-and-complete encoding for (constructively)
deciding the dynamic controllability of DTNU.

Considering again the running example, the encoding of the constraints be-
tween agnes and goal is composed of only two transitions, as Ω is already in
DNF. The transitions are depicted in Fig. 14.

Negative Normal Form. If we allow for the introduction of new (urgent) locations
in the TGA, we can encode Ω(c, cG) linearly, thus obtaining a linear size of the
overall DTNU-to-TGA encoding. The idea comes from the following observation.
Suppose we have a piece of automaton that encodes a formula φ1 in such a way
that it is possible to move from location Ls1 to Le1 if and only if φ1 is satisfied,

26 Cimatti, Hunsberger, Micheli, Posenato and Roveri

Jφ1K Jφ2K · · · JφnK

Fig. 15 Encoding the conjunction φ1 ∧φ2 ∧ · · · ∧φn. JφK stands for the recursive encoding of
φ.

Jφ1K

Jφ2K

· · ·

JφnK

Fig. 16 Encoding the conjunction φ1 ∨φ2 ∨ · · · ∨φn. JφK stands for the recursive encoding of
φ.

and suppose that we have an analogous encoding for another formula φ2 with
starting and ending locations Ls2 to Le2. We can encode the formula φ1 ∧ φ2 by
“concatenating” the two automata. That is, we introduce a transition from Le1
to Ls2 with the tautological guard >. Now, in order to move from Ls1 to Le2 the
formula φ1 ∧ φ2 must be satisfied.8 Similarly, if we consider the formula φ1 ∨ φ2

we can introduce two extra locations Ls∨ and Le∨ and introduce four transitions
with the guard >: one from Ls∨ to Ls1, one from Ls∨ to Ls2, one from Le1 to Le∨,
and one from Le2 to Le∨. In this way, we create a “diamond” with two paths from
Ls∨ to Le∨; one path encodes φ1, the other encodes φ2. This construction is simple
and correct, even though it introduces many unneeded locations. In fact it is also
possible to compress this encoding by merging locations instead of linking them
with tautological transitions and it is possible to merge sequences of guards in a
single conjunctive guard. However, we decided to explain the simplest version for
clarity.

Given a rewriting of Ω(c, cG) that only has disjunctions and conjunctions (but
no negations) we can recursively create a piece of automaton that encodes the
formula. This is done by constructing an automaton in which disjunctions and
conjunctions are recursively encoded as shown in Fig. 15 and Fig. 16. It is well
known [27] that we can syntactically and linearly transform Ω(c, cG) into Negative
Normal Form (NNF) and transform the negations of the atoms into positive atoms
as before, by exploiting the fact that ¬(cY− cX ≤ δ) is equivalent to cY− cX > δ.

Fig. 17 depicts the running example encoded using the NNF decomposition of
the free constraints optimized by compressing the conjunction of the cX < cG in

8 We are assuming that all the locations of the automata pieces are urgent, so the clocks are
frozen and no time can elapse.

Dynamic Controllability via Timed Game Automata 27

agnes goal
〈cCs < ĉ ∧ · · · ∧ cNe < ĉ, t1, ∅〉

〈cCs − cNe ≤ 0, t2, ∅〉

〈cNs − cCe ≤ 0, t3, ∅〉

Fig. 17 NNF constraints between agnes and goal for the sample DTNU in Fig. 5.

a single guard and by avoiding the unneeded tautological guards. In the running
example, Ω is already in NNF as there are no negations.

Even though the NNF decomposition is always more succinct than the DNF,
the effort of dealing with disjunctions is moved from the encoding to the TGA
solver, so we are in a trade-off condition.

4.2.4 CDTNU-to-TGA Encoding

The encoding of a CDTNU into a TGA is accomplished by combining the tech-
niques used in the previous encodings. The main observation is that the encodings
of contingent constraints and observation time-points can be combined without
any modifications; however, there needs to be a way of constructing a path lead-
ing to the goal location such that that path can be traversed if and only if all
of the free constraints are satisfied and all of the relevant time-points have been
executed.

To do so, the features from the CSTNU and DTNU encodings are combined,
as follows. First, each propositional letter p is given a dedicated clock bP. Next,
note that Boolean labels are essentially logical implications for constraints. In par-
ticular, if a constraint φ is labeled with `1, `2 · · · , `n from P ∗, then that constraint
can be expressed as a single implication `1 ∧ `2 ∧ · · · ∧ `n → φ. This follows from
the semantics of dynamic controllability for CSTNUs: a labeled constraint need
only be satisfied in scenarios in which its label is true. Given this observation, an
appropriate piece of automaton can be built using the NNF technique described
above, where implications are rewritten as disjunctions (e.g., A→ B ≡ ¬A ∨ B),
each positive literal p is encoded as bP = ĉ, and each negative literal ¬p is encoded
as bP < ĉ.

For example, consider a disjunctive constraint, (S − R ≤ 4) ∨ (S − R ≥ 8)
labeled by p¬q, where the observation time-point X generates a truth value for p,
and Y generates a truth value for q. That constraint is logically equivalent to the
following implication:

(p ∧ ¬q)→ ((S −R ≤ 4) ∨ (S −R ≥ 8)).

This formula can translated into a TGA using the NNF technique, as follows.

((cX = ĉ) ∨ (cY = ĉ) ∨ (bP < ĉ) ∨ (bQ = ĉ))∨
((cR < ĉ) ∧ (cS < ĉ) ∧ ((cR− cS ≤ 4) ∨ (cR− cS ≥ 8)))

This formula results in the automaton structure shown in Fig. 18 by applying the
construction explained in Section 4.2.3. The CDTNU example presented in Fig. 6
is encoded into the TGA shown in Fig. 19.

28 Cimatti, Hunsberger, Micheli, Posenato and Roveri

vera · · · · · · goal

〈cR
<
ĉ;
t
5 ; ∅〉

〈cS < ĉ; t6; ∅〉

〈cR
−
cS
≤

4;
t 7

;
∅〉

〈cR
−
cS
≥

8;
t 8

;
∅〉

〈bQ = ĉ; t4; ∅〉

〈bP < ĉ; t3; ∅〉

〈cY = ĉ; t2; ∅〉

〈cX = ĉ; t1; ∅〉

Fig. 18 Encoding of the example disjunctive labeled free constraint in TGA.

5 Conclusion

This paper presented a summary of a variety of temporal network formalisms that
have been widely used to represent different kinds of temporal constraints and re-
lated information. The paper combined all of the features from those networks into
a single, unifying formalism, called a Conditional Disjunctive Temporal Network
with Uncertainty (CDTNU). It then presented a way of encoding the dynamic
controllability problem for any CDTNU into a reachability game for a linear-size
Timed Game Automaton, thereby generating, for the first time, a sound and com-
plete algorithm for determining the dynamic controllability of CSTNUs, DTNUs
and CDTNUs.

Strategy extraction. One interesting characteristic of the algorithms for checking
TGA reachability [6] is the possibility of obtaining a strategy for winning the game
or an unbeatable counter-strategy for the opponent. This feature is useful also in
the context of temporal networks, as a counter-strategy for the TGA obtained from
a network, corresponds to the strategy for scheduling the controllable time-points
required by the dynamic controllability problem definition. In practice, one can use
the counter-strategy generated from the TGA encoding to schedule time-points,
as each controllable time point has a single transition associated with it: when the
counter-strategy prescribes to take that transition, then it is time to schedule the
time point.

CDTNU and Temporal Workflows Models. As discussed in Section 1.1 and in Sec-
tion 2, in the literature there are different formal proposals about how to extend
workflow models or process-aware-system models in order to allow them to rep-
resent and manage significant kinds of temporal aspects [20,17,16,14,8,28,29].
Each of such formal models defines which kinds of temporal aspects/constraints
can be represented in each component of the model and characterizes how any
workflow/process instance execution has to satisfy the specified temporal con-
straints in order to be a successful execution of the instance. In other words, each
formal model proposes an extension of the temporal consistency/controllability

Dynamic Controllability via Timed Game Automata 29

a
g
n
e
s

v
e
r
a

g
o
a
l

L
∅

L
p
q

L
p
¬
q

L
p

〈>
;
p
a
s
s
;
{c
δ
}〉

〈c
δ
>

0
;
g
a
i
n
;
∅〉

c
E
E
T
s
<

ĉ
∧
c
E
E
T
s
>

2
0
∧
c
E
E
T
e

=
ĉ

c
E
T
s
<

ĉ
∧
c
E
T
s
>

1
0
∧
c
E
T
e

=
ĉ

c
S
T
s
<

ĉ
∧
c
S
T
s
>

3
0
∧
c
S
T
e

=
ĉ

c
C
s
<

ĉ
∧
c
C
s
>

2
0
∧
c
C
e

=
ĉ

c
N
s
<

ĉ
∧
c
N
s
>

1
0
∧
c
N
e

=
ĉ

c
E
<

ĉ
∧
c
C
s
<

ĉ
∧
c
C
e
<

ĉ
∧
c
N
s
<

ĉ
∧
c
N
e
<

ĉ
∧
c
S
<

ĉ
∧
c
δ

c
C
s
−

c
N
e
≤

0

c
N
s
−

c
C
e
≤

0

b
P
<

ĉ

c
A
<

ĉ
∧
c
E
−

c
A
≥

0
∧

c
E
−

c
A
≤

1

c
E
T
s
<

ĉ
∧

c
E
T
e
<

ĉ
∧

c
A
−

c
E
T
s
≥

0
∧

c
A
−

c
E
T
s
≤

5
∧

c
E
−

c
E
T
e
≥

7
∧

c
E
−

c
E
T
e
≤

1
4

c
A

=
ĉ

b
P
<

ĉ

b
Q

=
ĉ

c
E
E
T
s
<

ĉ
∧
c
E
E
T
e
<

ĉ
∧

c
A
−
c
E
E
T
s
≥

0
∧
c
A
−
c
E
E
T
s
≤

1
0
∧

c
E
−
c
E
E
T
e
≥

1
0
∧
c
E
−
c
E
E
T
e
≤

2
5

cA
=

ĉ
bP

<
ĉ

b
Q
<

ĉ

c
S
T
s
<

ĉ
∧
c
S
T
e
<

ĉ
∧

c
E
−
c
S
T
s
≥

0
∧
c
E
−
c
S
T
s
≤

1
0

b
P

=
ĉ

〈c
E

=
ĉ
;
e
x
E
;
{c

E
}〉

〈c
S

=
ĉ
;
e
x
S
;
{c

S
}〉

〈c
A

=
ĉ
;
e
x
A
;
{c

A
}〉

〈c
S
T
s

=
ĉ
;
e
x
S
T
s
;
{c
S
T
s
}〉 〈c
N
S

=
ĉ
;
e
x
N
S
;
{c

N
S
}〉

〈c
C
S

=
ĉ
;
e
x
C
S
;
{c

C
S
}〉

〈c
E
T
s

=
ĉ
;
e
x
E
T
s
;
{c

E
T
s
}〉

〈c
E
E
T s

=
ĉ
;
e
x E
E
T s

;
{c
E
E
T s
}〉

〈c
N
s
<

ĉ
∧
c
N
e

=
ĉ
∧
c
N
s
≥

5
∧
c
N
s
≤

1
0
;
e
x
N
e
;
{c

N
e
,c
δ
}〉

〈c
C
s
<

ĉ
∧
c
C
e

=
ĉ
∧
c
C
s
≥

5
∧
c
C
s
≤

2
0
;
e
x
C
e
;
{c

C
e
,c
δ
}〉

〈c
E
T
s
<

ĉ
∧
c
E
T
e

=
ĉ
∧
c
E
T
s
≥

8
∧
c
E
T
s
≤

1
0
;
e
x
E
T
e
;
{c

E
T
e
,c
δ
}〉

〈c
E
E
T
s
<

ĉ
∧
c
E
E
T
e

=
ĉ
∧
c
E
E
T
s
≥

1
0
∧
c
E
E
T
s
≤

2
0
;
e
x
E
E
T
e
;
{c

E
E
T
e
,c
δ
}〉

〈c
S
T
s
<

ĉ
∧
c
S
T
e

=
ĉ
∧
c
S
T
s
≥

1
0
∧
c
S
T
s
≤

3
0
;
e
x
S
T
e
;
{c

S
T
e
,c
δ
}〉

〈c
E
<

ĉ
∧
c
E

=
0
∧
b
P

=
ĉ
;
r
e
s
e
t
P
;
{b

P
,c
δ
}〉

〈c
A
<

ĉ
∧
c
A

=
0
∧
b
Q

=
ĉ
;
r
e
s
e
t
Q
;
{b

Q
,c
δ
}〉

Fig. 19 TGA encoding of the CDTNU in Fig. 6. In transitions leading from vera to goal and
from agnes to goal the names and resets have been omitted.

30 Cimatti, Hunsberger, Micheli, Posenato and Roveri

concept at model level. Moreover, some of such proposals presents also algorithms
to verify the consistency/controllability of a workflow/process instance. Such algo-
rithms usually transform the input workflow/process instance into an equivalent or
quasi-equivalent STN/STNU/CSTNU instance in order to exploit the well-known
consistency/controllability checking algorithms for such temporal models.

However, this translation is not always straightforward, because the temporal
behavior of some workflow patterns can be represented only by using disjunc-
tive or conditional constrains that cannot be represented as STN/STNU/CSTNU
sub-networks. For example, temporal aspects regarding the workflow temporized
parallel join connector or the workflow multiple temporized receive pattern [21]
have to be expressed as disjunctive constraints [13]. In related work [28,13], the
authors proposed to override the CSTNU limitation concerning disjunctive con-
straints by considering and checking multiple CSTNU sub-networks (two for each
translated join connector/multiple temporized receive pattern) for determining
some upper bounds that have to be used in the final CSTNU translation. Another
approach [18] uses Hyper Temporal Networks (HyTNs), an extension of STNs, in
order to directly represent these kind of disjunctive constraints while maintaining
an efficient consistency check. Currently, HyTNs cannot represent conditional or
contingent constraints.

For such workflow/process-aware models, the adoption of the CDTNU model
as the internal temporal model would allow a significant simplification of the trans-
lation phase because the above workflow patterns can be directly represented with-
out any preliminary analysis or restrictions. Moreover, CDTNU adoption allows
the representation of temporal characterizations in other more sophisticated work-
flow patterns. Such patterns have not yet been considered [30] due to the difficulty
of representing their temporal features only using STNs, STNUs or CSTNUs.

Future work. There are many avenues for future work. First, there needs to be
an extensive empirical evaluation of our approach, especially since there are many
different options for translating CSTNUs and DTNUs into TGAs. Which options
will yield the most efficient DC-checking algorithm is an open question. Moreover,
given the peculiar nature of the encoding, it may be possible to specialize TGA-
solving algorithms using dedicated heuristics or pruning techniques that exploit
the particular features of the CDTNU-to-TGA encoding.

References

1. Abdeddaim, Y., Asarin, E., Sighireanu, M.: Simple algorithm for simple timed games. In:
TIME, pp. 99–106 (2009)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2),
183–235 (1994)

4. Augusto, J.C.: Temporal reasoning for decision support in medicine. Artificial Intelligence
in Medicine 33(1), 1–24 (2005)

5. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.: Uppaal-Tiga:
Time for playing games! In: W. Damm, H. Hermanns (eds.) Proceedings of the 19th Con-
ference on Computer Aided Verification (CAV-2007), Lecture Notes in Computer Science,
vol. 4590, pp. 121–125. Springer Berlin Heidelberg (2007)

6. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms
for the analysis of timed games. In: CONCUR, pp. 66–80 (2005)

Dynamic Controllability via Timed Game Automata 31

7. Cesta, A., Fratini, S., Orlandini, A., Finzi, A.: Flexible plan verification: Feasibility results.
Fundamenta Informaticae 107(2–3), 111–137 (2011)

8. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: Toward a Time-centric mod-
eling of Business Processes in BPMN 2.0. In: International Conference on Information
Integration and Web-based Applications & Services, pp. 154–163. ACM (2013)

9. Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., Roveri, M.: Sound and com-
plete algorithms for checking the dynamic controllability of temporal networks with un-
certainty, disjunction and observation. In: A. Cesta, C. Combi, F. Laroussinie (eds.)
21st International Symposium on Temporal Representation and Reasoning, TIME 2014,
Verona, Italy, September 8-10, 2014, pp. 27–36. IEEE Computer Society (2014). DOI
10.1109/TIME.2014.21

10. Cimatti, A., Hunsberger, L., Micheli, A., Roveri, M.: Using timed game automata to
synthesize execution strategies for simple temporal networks with uncertainty. In: Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31,
2014, Québec City, Québec, Canada., pp. 2242–2249 (2014)

11. Cimatti, A., Micheli, A., Roveri, M.: Solving temporal problems using SMT: weak con-
trollability. In: AAAI, pp. 448–454 (2012)

12. Cimatti, A., Micheli, A., Roveri, M.: Solving strong controllability of temporal problems
with uncertainty using SMT. Constraints 20(1), 1–29 (2015)

13. Combi, C., Gambini, M., Migliorini, S., Posenato, R.: Representing business processes
through a temporal data-centric workflow modeling language: An application to the man-
agement of clinical pathways. IEEE T. Systems, Man, and Cybernetics: Systems 44(9),
1182–1203 (2014). DOI 10.1109/TSMC.2014.2300055

14. Combi, C., Gozzi, M., Posenato, R., Pozzi, G.: Conceptual modeling of flexible temporal
workflows. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 7(2), 19
(2012). DOI 10.1145/2240166.2240169

15. Combi, C., Hunsberger, L., Posenato, R.: An algorithm for checking the dynamic control-
lability of a conditional simple temporal network with uncertainty. In: J. Filipe, A.L.N.
Fred (eds.) ICAART 2013 - Proceedings of the 5th International Conference on Agents
and Artificial Intelligence, Volume 2, Barcelona, Spain, 15-18 February, 2013, pp. 144–156.
SciTePress (2013)

16. Combi, C., Posenato, R.: Controllability in temporal conceptual workflow schemata. In:
U. Dayal, J. Eder, J. Koehler, H.A. Reijers (eds.) Business Process Management, 7th
International Conference, BPM 2009, Ulm, Germany, September 8-10, 2009. Proceedings,
Lecture Notes in Computer Science, vol. 5701, pp. 64–79. Springer (2009). DOI 10.1007/
978-3-642-03848-8 6

17. Combi, C., Pozzi, G.: Architectures for a temporal workflow management system. In:
Proceedings of the 2004 ACM Symposium on Applied Computing (SAC-2004), pp. 659–
666. ACM, New York, NY, USA (2004)

18. Comin, C., Posenato, R., Rizzi, R.: A tractable generalization of simple temporal networks
and its relation to mean payoff games. In: A. Cesta, C. Combi, F. Laroussinie (eds.)
21st International Symposium on Temporal Representation and Reasoning, TIME 2014,
Verona, Italy, September 8-10, 2014, pp. 7–16. IEEE Computer Society (2014). DOI
10.1109/TIME.2014.19

19. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence 49,
61–95 (1991)

20. Eder, J., Panagos, E., Rabinovich, M.: Time constraints in workflow systems. In: M. Jarke,
A. Oberweis (eds.) Advanced Information Systems Engineering, LNCS, vol. 1626, pp. 286–
300. Springer Berlin Heidelberg (1999)

21. Hollingsworth, D.: The workflow reference model. http://www.wfmc.org/standards/
model.htm (1995)

22. Hunsberger, L.: Fixing the semantics for dynamic controllability and providing a more
practical characterization of dynamic execution strategies. In: C. Lutz, J. Raskin (eds.)
TIME 2009, 16th International Symposium on Temporal Representation and Reasoning,
Bressanone-Brixen, Italy, 23-25 July 2009, Proceedings, pp. 155–162. IEEE Computer
Society (2009). DOI 10.1109/TIME.2009.25

23. Hunsberger, L.: A fast incremental algorithm for managing the execution of dynamically
controllable temporal networks. In: N. Markey, J. Wijsen (eds.) TIME 2010 - 17th Interna-
tional Symposium on Temporal Representation and Reasoning, Paris, France, 6-8 Septem-
ber 2010, pp. 121–128. IEEE Computer Society (2010). DOI 10.1109/TIME.2010.16

32 Cimatti, Hunsberger, Micheli, Posenato and Roveri

24. Hunsberger, L.: A faster execution algorithm for dynamically controllable stnus. In:
C. Sánchez, K.B. Venable, E. Zimányi (eds.) 2013 20th International Symposium on Tem-
poral Representation and Reasoning, Pensacola, FL, USA, September 26-28, 2013, pp.
26–33. IEEE Computer Society (2013). DOI 10.1109/TIME.2013.13

25. Hunsberger, L.: A faster algorithm for checking the dynamic controllability of simple
temporal networks with uncertainty. In: B. Duval, H.J. van den Herik, S. Loiseau, J. Filipe
(eds.) ICAART 2014 - Proceedings of the 6th International Conference on Agents and
Artificial Intelligence, Volume 1, ESEO, Angers, Loire Valley, France, 6-8 March, 2014,
pp. 63–73. SciTePress (2014). DOI 10.5220/0004758100630073

26. Hunsberger, L., Posenato, R., Combi, C.: The Dynamic Controllability of Conditional
STNs with Uncertainty. In: Proceedings of the Workshop on Planning and Plan Execution
for Real-World Systems: Principles and Practices (PlanEx) at ICAPS-2012, pp. 1–8 (2012).
URL http://arxiv.org/abs/1212.2005

27. Kleene, S.: Mathematical Logic. J. Wiley & Sons (1967)
28. Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controllability of time-aware processes

at run time. In: R. Meersman, H. Panetto, T.S. Dillon, J. Eder, Z. Bellahsene, N. Ritter,
P.D. Leenheer, D. Dou (eds.) On the Move to Meaningful Internet Systems: OTM 2013
Conferences - Confederated International Conferences: CoopIS, DOA-Trusted Cloud, and
ODBASE 2013, Graz, Austria, September 9-13, 2013. Proceedings, Lecture Notes in Com-
puter Science, vol. 8185, pp. 39–56. Springer (2013). DOI 10.1007/978-3-642-41030-7 4

29. Lanz, A., Posenato, R., Combi, C., Reichert, M.: Simple temporal networks with partially
shrinkable uncertainty. In: S. Loiseau, J. Filipe, B. Duval, H.J. van den Herik (eds.)
ICAART 2015 - Proceedings of the International Conference on Agents and Artificial
Intelligence, Volume 2, Lisbon, Portugal, 10-12 January, 2015., pp. 370–381. SciTePress
(2015)

30. Lanz, A., Weber, B., Reichert, M.: Workflow Time Patterns for Process-Aware Information
Systems. In: J. Mylopoulos, N.M. Sadeh, M.J. Shaw, C. Szyperski, I. Bider, T. Halpin,
J. Krogstie, S. Nurcan, E. Proper, R. Schmidt, R. Ukor (eds.) Enterprise, Business-Process
and Information Systems Modeling 11th International Workshop, BPMDS 2010, and 15th
International Conference, EMMSAD 2010, pp. 94–107. Springer Berlin Heidelberg, Berlin,
Heidelberg (2010)

31. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theorey of Computation, 2 edn.
Prentice-Hall, Inc. (1998)

32. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems.
In: STACS, pp. 229–242 (1995)

33. Morris, P.: A structural characterization of temporal dynamic controllability. In: Principles
and Practice of Constraint Programming (CP-2006), Lecture Notes in Computer Science,
vol. 4204, pp. 375–389. Springer (2006)

34. Morris, P.: Dynamic controllability and dispatchability relationships. In: H. Simonis (ed.)
Integration of AI and OR Techniques in Constraint Programming - 11th International
Conference (CPAIOR-2014), Lecture Notes in Computer Science, vol. 8451, pp. 464–479.
Springer (2014)

35. Morris, P., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal uncertainty.
In: B. Nebel (ed.) Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI-2001), pp. 494–499. Morgan Kaufmann (2001)

36. Morris, P.H., Muscettola, N.: Temporal dynamic controllability revisited. In: AAAI, pp.
1193–1198 (2005)

37. Orlandini, A., Finzi, A., Cesta, A., Fratini, S.: Tga-based controllers for flexible plan
execution. In: KI, no. 7006 in LNAI, pp. 233–245. Springer-Verlag (2011)

38. Peintner, B., Venable, K.B., Yorke-Smith, N.: Strong controllability of disjunctive temporal
problems with uncertainty. In: Principles and Practice of Constraint Programming (CP-
2007), pp. 856–863 (2007)

39. Rossi, F., Venable, K.B., Yorke-Smith, N.: Uncertainty in soft temporal constraint prob-
lems: A general framework and controllability algorithms for the fuzzy case. Journal of
Artificial Intelligence Research 27, 617–674 (2006)

40. Tsamardinos, I., Pollack, M.E.: Efficient solution techniques for disjunctive temporal rea-
soning problems. Artificial Intelligence 151, 43–89 (2003)

41. Tsamardinos, I., Vidal, T., Pollack, M.: Ctp: A new constraint-based formalism for con-
ditional, temporal planning. Constraints 8(4), 365–388 (2003)

42. Tsamardinos, I., Vidal, T., Pollack, M.E.: CTP: A new constraint-based formalism for
conditional, temporal planning. Constraints 8, 365–388 (2003)

Dynamic Controllability via Timed Game Automata 33

43. Venable, K.B., Volpato, M., Peintner, B., Yorke-Smith, N.: Weak and dynamic control-
lability of temporal problems with disjunctions and uncertainty. In: Proceedings of the
Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems
(COPLAS-2010) in ICAPS-2010, pp. 50–59 (2010)

44. Venable, K.B., Yorke-Smith, N.: Disjunctive temporal planning with uncertainty. In: Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-2005),
pp. 1721–1722 (2005)

45. Vidal, T.: Controllability characterization and checking in contingent temporal constraint
networks. In: KR, pp. 559–570 (2000)

46. Vidal, T., Fargier, H.: Contingent durations in temporal csps: from consistency to control-
labilities. In: Proceedings of the 4th International Symposium on Temporal Representation
and Reasoning (TIME-1997) (1997)

47. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from consis-
tency to controllabilities. Journal of Experimental and Theoretical Artificial Intelligence
11(1), 23–45 (1999)

48. Vidal, T., Ghallab, M.: Temporal constraints in planning: Free or not free? In: Proceedings
of the International Workshop on Constraint-Based Reasoning (CONSTRAINT-1995) in
FLAIRS-1995 (1995)

49. Vidal, T., Ghallab, M.: Dealing with uncertain durations in temporal constraint networks
dedicated to planning. In: W. Wahlster (ed.) Proceedings of the 12th European Conference
on Artificial Intelligence (ECAI-1996)”, pp. 48–54. John Wiley and Sons, Chichester (1996)

34 Cimatti, Hunsberger, Micheli, Posenato and Roveri

A The Semantics of Dynamic Controllability for STNUs

Although the intuitive description of the execution semantics for STNUs given in
Section 3.1 makes reference to both the agent and the environment, formal treat-
ments of the execution semantics have so far only defined execution strategies for
the agent; strategies available to the environment have only been implicitly deter-
mined by the sets of possible outcomes of the agent’s decisions [35,22]. Thus, the se-
mantics of dynamic controllability for STNUs has effectively described a one-player
game where the outcomes of the agent’s decisions are non-deterministic. This ap-
pendix introduces a novel formulation of the execution semantics for STNUs as a
two-player game between Agnes (the agent) and Vera (the environment), where
Agnes controls the execution of free time-points and Vera controls the contingent
durations. Agnes seeks an execution strategy that will ensure the satisfaction of all
constraints in C no matter what durations Vera chooses; Vera seeks a strategy that
will ensure that at least one constraint in C is unsatisfied no matter what Agnes
does. As will be seen, this formulation highlights an important asymmetry in the
execution semantics: Agnes is not able to react instantaneously to observations
of contingent time-points executing, but Vera is able to react instantaneously to
executions of free time-points.

A.1 Previous Semantics for the Dynamic Controllability of STNUs

The literature contains two equivalent versions of the semantics of dynamic con-
trollability of STNUs [35,22]. This section summarizes the version presented by
Hunsberger [22], which is expressed in terms of real-time execution decisions (RT-
EDs). For convenience, the following description presumes an agent named Agnes.

To begin, a partial schedule represents the current state of affairs from the
agent’s perspective—namely, the time-points that have been executed so far.

Definition 9 (Partial Schedule [22]) A partial schedule for an STNU, (T , C,L),
is a set, ψ, of assignments to time-points in T .

• TPs(ψ) ⊂ T denotes the set of time-points appearing in ψ;
• Vals(ψ) ⊂ R denotes the set of values appearing in ψ;
• for any X ∈ TPs(ψ), ψ(X) denotes the value assigned to X; and
• nowψ = max{v | v ∈ Vals(ψ)} is the time of the latest execution event in ψ.

(If ψ = ∅, let nowψ = −∞.)

Time-points in TPs(ψ) are said to be executed. A partial schedule is called re-
spectful if its assignments do not violate the bounds on any contingent link.

Intuitively, a partial schedule ψ assigns a real value to a subset of the time-points
in the network, and represents an execution history: the (free or uncontrollable)
time-points in ψ are the ones that have already been executed, and the assigned
values are the times at which they were executed. The time-points that are not in
ψ are the ones that have not yet been executed.

Given a partial schedule ψ, Agnes must decide what to do next. She has two
options: (1) wait for something to happen (i.e., wait for some contingent time-
point to execute); or (2) conditionally commit to executing a set of free time-
points at some time, Tf > nowψ. For example, given ψ = {(A2, 0), (X, 1)}, for

Dynamic Controllability via Timed Game Automata 35

which nowψ = 1, Agnes could decide to wait until the contingent time-point C2

eventually executes. Alternatively, she could decide that “if nothing happens before
time 7, I shall execute A1 at time 7.” The decisions available to Agnes are called
real-time execution decisions (RTEDs).

Definition 10 (RTED, for Agnes [22]) Let ψ be a respectful partial schedule.
An RTED for Agnes has one of two forms: wait or (Tf , χf). A wait decision is
applicable if at least one contingent time-point, C, is active in ψ (i.e., C’s activation
time-point has already been executed, but C has not). A (Tf , χf) decision (i.e.,
“If nothing happens before time Tf , execute the time-points in χf at time Tf”)
is applicable if Tf > nowψ and χf is a non-empty subset of unexecuted free time-
points (i.e., χf 6= ∅ and χf ∩ TPs(ψ) = ∅).

Given a partial schedule ψ and some RTED ∆, the outcome of the decision ∆
typically depends on the range of possible durations for one or more contingent
links, as follows.

Definition 11 (Situations [35]) Let L = {(A1, `1, u1, C1), . . . , (Ak, `k, uk, Ck)}
be the set of contingent links in a given STNU S. Then the space of situations for S
is the set, Ω = [`1, u1]× [`2, u2]× . . .× [`k, uk]; and any ω = (ω1, ω2, . . . , ωk) ∈ Ω is
called a situation. A situation ω is respected by a partial schedule ψ if the durations
specified in ω are consistent with not only the execution times in ψ, but also the
constraint that all time-points that are unexecuted in ψ must occur after nowψ [22].

Note that if ψ is a partial schedule that respects a situation ω, and Ai ∈ TPs(ψ),
but its corresponding contingent time-point Ci 6∈ TPs(ψ) (i.e., Ci is active in ψ),
then it follows that nowψ < ψ(Ai) + ωi, since Ci must be executed after nowψ.

Definition 12 (Outcome of a wait decision [22]) Let ψ be a partial schedule
for which at least one contingent time-point is active, and let ω be a situation that
is respected by ψ. The outcome of the wait decision in that context depends on:
(1) tnc(ψ, ω), the time of the next contingent execution according to ψ and ω; and
(2) χ∗(ψ, ω), the set of contingent time-points that will execute next (i.e., at the
time tnc(ψ, ω)). In particular:

tnc(ψ, ω) = min{ψ(Ai) + ωi | Ai ∈ TPs(ψ), Ci 6∈ TPs(ψ)}; and
χ∗(ψ, ω) = {Ci | Ai ∈ TPs(ψ), Ci 6∈ TPs(ψ), ψ(Ai) + ωi = tnc(ψ, ω)}.

The outcome of the wait decision is notated O(ψ, ω, wait) and is given by:

O(ψ, ω, wait) = ψ ∪ {(Ci, tnc(ψ, ω)) | Ci ∈ χ∗(ψ, ω)}

Definition 13 (Outcome of a (Tf , χf) Decision [22]) Let ψ be a partial sched-
ule for which at least one free time-point is unexecuted, and let ω be a situation
that is respected by ψ. For convenience, let t = tnc(ψ, ω) (or t =∞ if no contingent
time-points are active in ψ), and let χ∗ = χ∗(ψ, ω). The outcome of a (Tf , χf)
decision in that context, notated O(ψ, ω, (Tf , χf)), depends on the relationship
between t and Tf . In particular:

O(ψ, ω, (Tf , χf)) = ψ ∪

{(Ci, t) | Ci ∈ χ∗}, if t < Tf
{(X, t) | X ∈ χf}, if Tf < t
{(Y, t) | Y ∈ χf ∪ χ∗}, if Tf = t

36 Cimatti, Hunsberger, Micheli, Posenato and Roveri

In the first case, some contingent time-points happened to execute before the time
Tf arrived; in the second case, only the time-points in χf were executed; in the
third case, rarely expected in practice, some contingent time-points happened to
execute precisely at the time Tf and, thus, both contingent and free time-points
were executed simultaneously.

Definition 14 (RTED-based Strategy [22]) An RTED-based strategy for an
STNU S is a mapping R from respectful partial schedules to real-time execution
decisions. Thus, if ψ is a respectful partial schedule, then R(ψ) is an RTED.

Lemma 1 If R is an RTED-based strategy for an STNU S, and ω is any situation,
then R and ω together determine a unique (complete) schedule, notated ψ(R,ω),
that results from following the strategy R in the situation ω [22].

Definition 15 (Dynamic Controllabilty for an STNU) An STNU S =
(T , C,L) is dynamically controllable if there exists an RTED-based strategy R
for S such that for each situation ω, the complete schedule ψ(R,ω) that results
from following the strategy R satisfies all of the constraints in C.

A.2 Dynamic Controllability for STNUs as a Two-Player Game

This section provides an alternative characterization of the semantics of dynamic
controllability for STNUs by explicitly representing the decisions available to the
environment. For convenience, the environment is represented by an agent Vera.
In any given context, a pair of decisions—one by Agnes and one by Vera—together
determine a unique outcome.

The kinds of decisions available to Vera are different from those available to
Agnes in two important respects. First, Vera’s version of an RTED—called an
RTED?—allows a decision of the form, “if nothing happens before or at time Tu,
then I shall execute the contingent time-points in the set χu ⊆ Tu at time Tu.” Note
that when time Tu arrives, should Vera observe Agnes executing any time-points at
time Tu, Vera has the option of instantaneously changing her mind. Second, in such
cases, Vera may instantaneously react by executing some other contingent time-
points at time Tu. Such decisions are called instantaneous reactions. For example,
suppose Vera had decided that “if nothing happens before or at time 7, then I shall
execute C2 at time 7”, but when time 7 arrived, she observed Agnes executing some
time-point(s). Vera could withdraw her decision to execute C2 and instantaneously
react by deciding to execute some other contingent time-point(s) at time 7.

Definition 16 (RTED?, for Vera) Let ψ be a respectful partial schedule. A
before-or-at RTED (RTED?) has one of two forms: wait or (Tu, χu). A wait

decision is only applicable if no contingent time-points are currently active in
ψ. A (Tu, χu) decision (i.e., “If nothing happens before-or-at time Tu, I shall
execute the time-points in χu at time Tu”) is applicable only if Tu > nowψ, and
χu is a non-empty subset of currently-activated contingent time-points each of
whose execution window includes Tu; and all other contingent time-points that
are unexecuted in ψ are either unactivated in ψ or have execution windows that
extend beyond Tu.

Dynamic Controllability via Timed Game Automata 37

ψ

Op(ψ, (Tf , χf),∆u)

ψ′

Execute time points in χf
at time Tf

Execute time points in Υu
at time Tf

Execute time points in χu at time Tu

Fig. 20 Deriving the outcome ψ′ of decisions by Agnes and Vera from the partial schedule
ψ.

Definition 17 (Instantaneous reaction, for Vera) Let ψ be a respectful par-
tial schedule. Let χ◦ be the set of contingent time-points that are currently active
in ψ whose execution windows happen to terminate precisely at nowψ; and let χ?

be any (possibly empty) subset of the contingent time-points that are currenlty
active in ψ whose execution windows include nowψ, but also extend beyond nowψ.
An instantaneous reaction is a decision (by Vera) to execute the contingent time-
points in the set χ◦ ∪ χ? at the time nowψ.

To accommodate Vera’s ability to react instantaneously, the outcome for a pair
of decisions—one by Agnes, one by Vera—is defined in two stages: partial and full.

Definition 18 (Partial Outcome) Let ψ be a respectful partial schedule; let
∆f be an RTED for Agnes; and let ∆u be an RTED? for Vera. The partial out-
come, Op(ψ,∆f ,∆u), is defined as follows.9

(1a) Op(ψ, wait, (Tu, χu)) = ψ ∪ {(C, Tu) | C ∈ χu}.
(1b) Op(ψ, (Tf , χf), (Tu, χu)) = ψ ∪ {(C, Tu) | C ∈ χu}, if Tu < Tf .
(2a) Op(ψ, (Tf , χf), wait) = ψ ∪ {(X,Tf) | X ∈ χf}.
(2b) Op(ψ, (Tf , χf), (Tu, χu)) = ψ ∪ {(X,Tf) | X ∈ χf}, if Tf ≤ Tu.

Note that in cases (1a) and (1b), the partial outcome includes only the execution
of the contingent time-points in χu at time Tu. Cases (2a) and (2b) are analogous,
in that the partial outcome includes only the execution of the free time-points in
χf at time Tf , except that Vera is also able to instantaneously react by executing
one or more contingent time-points, also at time Tf , as described below.

Definition 19 (Full Outcome) Let ψp = Op(ψ,∆f ,∆u) be a partial outcome,
as described above; and let Υu be a set of contingent time-points that constitute
an instantaneous reaction to ψp. The full outcome, O(ψ,∆f ,∆u, Υu), is the same
as ψp, except that in cases (2a) and (2b), the schedule is augmented to include
the execution of the time-points in Υu at time Tf .

Fig. 20 illustrates the possible pathways from a partial schedule ψ to the full
outcome ψ′ = O(ψ,∆f ,∆u, Υu). Note that nowψ′ is either Tf or Tu, depending on
which pathway is taken. Note, too, that the full outcome, ψ′, is typically a partial
schedule, except at the very end when all of the time-points have been executed.
Table 1 shows the outcomes that result from sample decisions by Agnes and Vera
in the case of the STNU from Fig. 3. In each case, ψ′ = O(ψ,∆f ,∆u, Υu).

9 Note that a wait decision cannot be simultaneously applicable for both Agnes and Vera.

38 Cimatti, Hunsberger, Micheli, Posenato and Roveri

ψ = {(A2, 0), (X, 1)}; ∆f = (7, {A1}); ∆u = (6, {C2}).

ψ′ = {(A2, 0), (X, 1), (C2, 6)}; Υu irrelevant.

ψ = {(A2, 0), (X, 1)}; ∆f = (7, {A1}); ∆u = (8, {C2}).

ψ′ = {(A2, 0), (X, 1), (A1, 7), (C2, 7)}, where Υu = {C2}.

ψ = {(A2, 0), (X, 1)}; ∆f = (7, {A1}); ∆u = (8, {C2}).

ψ′ = {(A2, 0), (X, 1), (A1, 7)}, where Υu = ∅.

Table 1 The outcomes ψ′ for sample decisions by Agnes and Vera for the STNU from Fig. 3.

Definition 20 (RTED?-based Strategy for Vera) An RTED?-based strategy
(for Vera) is a pair of mappings, (f1, f2), where f1 is a mapping from respectful
partial schedules to RTED?s; and f2 is a mapping from respectful partial schedules
to instantaneous reactions.

Definition 21 (Outcomes of Strategy Pairs) Let ψ be a respectful partial
schedule; R an RTED-based strategy; and R? = (f1, f2) an RTED?-based strategy.
The one-step outcome, O1(ψ,R,R?), is defined by:

O1(ψ,R,R?) = O(ψ,R(ψ), f1(ψ), f2(Op(ψ,R(ψ), f1(ψ)))).

The terminal outcome, O∗(R,R?), is the complete schedule that results from the
following recursive definition: ψ0 = ∅ and ψi+1 = O1(ψi, R,R

?).

The constraints on the decisions generated by R?—namely, that Vera must observe
the bounds on the contingent durations—ensure that each ψi in the sequence will
be respectful, given that ψ0 = ∅ is trivially respectful.

Given the above execution semantics for STNUs, the corresponding definition
of dynamic controllability is straightforward.

Definition 22 (Dynamic Controllability) An STNU, (T , C,L), is dynamically
controllable if there exists an RTED-based strategy R, such that for all RTED?-
based strategies R?, the variable assignments in the complete schedule, O∗(R,R?),
satisfy all of the constraints in C.

Theorem 1 Definition 22 is equivalent to the prior definition of dynamic control-
lability (Defn. 15).

Proof Let S = (T , C,L) be any STNU. First, suppose that S is dynamically con-
trollable according to the RTED-based semantics. Then there exists an RTED-
based execution strategy R such that for any situation ω, the full schedule that
results from following R in ω satisfies all of the constraints in C. Let that strategy
R be the one chosen by Agnes in the two-player game semantics. Let R∗ = (f1, f2)
be any strategy for Vera. It will be shown that the terminal outcome O∗(R,R∗)
that results from Agnes and Vera playing these two strategies against each other
necessarily satisfies the constraints in C. In particular, it will be shown by induc-
tion that each (partial or full) schedule obtained at any point during the execution
phase by following R and R∗ according to the two-player game semantics can also
be obtained by following R in some situation in the RTED-based semantics.

Base Case. Let ψ0 be the empty partial schedule. This is the starting partial
schedule in either semantics.

Dynamic Controllability via Timed Game Automata 39

Recursive Case. Let ψ be any partial schedule obtained by following R and R∗

in the two-player game semantics. There are three sub-cases to consider.
• R(ψ) = wait; R∗(ψ) = (Tu, χu). In this case, the partial outcome involves

the execution of the contingent time-points in χu at the time Tu. Since the
applicability conditions for Vera’s RTED∗ decision requires the execution
times for contingent time-points to respect the lower and upper bounds
on the corresponding contingent links, the resulting partial outcome is a
partial schedule obtainable from any situation ω that is respected by ψ and
includes the durations specified by the contingent time-points in χu.
• R(ψ) = (Tf , χf); R∗(ψ) = (Tu, χu), where Tu < Tf . This case is essentially

the same as the first case, since Tu < Tf .
• R(ψ) = (Tf , χf); R∗(ψ) = wait. In this case, the partial outcome involves

the execution of the executable time-points in χf . Since Vera can only
use the wait decision when the partial schedule ψ does not contain any
currently active contingent links, this must be the outcome in the RTED-
based semantics, too. There can be no instantaneous reaction by Vera in
this case.

• R(ψ) = (Tf , χf); R∗(ψ) = (Tu, χu), where Tf ≤ Tu. This case is the same
as the preceding case except that Vera may choose to react instantaneously
(i.e., f2(ψ) may not be empty). The applicability conditions of instanta-
neous reactions require the contingent time-points in f2(ψ) to be currently
active in ψ, and such that their execution windows include the time nowψ.
In addition, any contingent time-points that happen to have their execution
window terminate precisely at nowψ must be included in f2(ψ). Thus, the
full outcome is the same as in the preceding case except that some contin-
gent time-points may also execute at the time Tf . Again, this corresponds
to any situation ω that is respected by ψ, while also respecting the contin-
gent durations determined by the executuion of the contingent time-points
in f2(ψ).

For the other direction, suppose that S is not dynamically controllable accord-
ing to the RTED-based semantics. In other words, for any RTED-based strategy
R, there is a situation ωR such that the outcome O∗(R,ωR) that results from
following the strategy R in the situation ωR does not satisfy the constraints in C.
(Any situation with this property will be said to thwart the strategy R.) It will be
shown that there must be a strategy R∗ = (f1, f2) for Vera that will ensure that
Agnes loses the two-player game. The proof is by induction. The proposition to
prove is the following:

Let ψ be any partial schedule that can be reached by following any RTED-
based strategy R in any thwarting situation ωR, according to the RTED-based
semantics. Then there is an RTED∗ decision ∆u (that depends only on ψ, not
on R) and an instantaneous reaction Υu for Vera such that the full outcome
obtained from R(ψ),∆u and Υu according to the two-player game semantics is
a schedule that is identical to one obtained by following R in some thwarting
situation ωR.

Let ψ be a partial schedule that can be reached by following some RTED-based
execution strategy R in some thwarting situation ωR, according to the RTED-
based semantics. Now, if no contingent time-points are currently active in ψ, then

40 Cimatti, Hunsberger, Micheli, Posenato and Roveri

Agnes must choose a (Tf , χf) decision, and Vera must choose the wait decision.
But in that case, the outcome is fully determined: the time-points in χf will be
executed at time Tf . Furthermore, the outcome is the same whether using the
RTED-based semantics or the two-player game semantics.

On the other hand, suppose that at least one contingent time-point is currently
active in ψ. Let Θψ be the set of RTED-based execution strategies for Agnes that
can generate the partial schedule ψ at some point during the execution of the
network, if followed in some thwarting situation. For each t > nowψ, let Θ(t) be the
subset of Θψ that contains all strategies θ whose decisions, θ(ψ), specify execution
times greater than t. Now, for any strategy θ ∈ Θ(t), there must be a situation ωθ
that thwarts θ; however, that situation may involve the execution of contingent
time-point(s) at some time before t (i.e., at some time ρ, where now < ρ < t).
Of particular interest are the values of t > nowψ for which all of the strategies in
Θ(t) can be thwarted by situations that do not involve executing any contingent
time-points before time t. In particular, let Γ be the set of real numbers t > nowψ
for which every strategy θ ∈ Θ(t) can be thwarted by a situation that is consistent
with no new contingent executions occurring before time t (i.e., at any time ρ such
that nowψ < ρ < t).

Now, suppose that Γ = ∅. Let Agnes adopt the following strategy: wait until
some contingent time-point happens to execute. Let t > nowψ be the time of that
next contingent execution. Since t 6∈ Γ , there must be some strategy, θ ∈ Θ(t),
that could only be thwarted by situations that involve the execution of contingent
time-points before time t. Since no contingent time-points executed before time
t, that strategy is not thwarted by the current situation and, thus, is a winning
strategy for Agnes, which is a contradiction. Thus, Γ 6= ∅.

Next, let Tu = inf{t | t > nowψ and t 6∈ Γ}. Now, Tu is well defined since Γ is
non-empty and bounded below by nowψ. Consider the possibility that Tu = nowψ.
This implies that for any time t > nowψ, there is a time t′ ∈ (nowψ, t) such
that t′ 6∈ Γ . But then a similar argument as that used to show that Γ is not
empty can be used to show that Tu cannot equal nowψ. In this case, given the
time t of the next contingent execution, there must be a time t′ ∈ (nowψ, t) such
that t′ 6∈ Γ and, hence, some strategy θ ∈ Θ(t′) that could only be thwarted by
contingent executions before time t′ < t. Since no such executions occurred, that
strategy could be followed by Agnes as a winning strategy, a contradiction. Thus,
Tu > nowψ. It remains to be seen whether Tu ∈ Γ .

Next, let Γ ∗ be the subset of (nowψ, Tu] such that for each t ∈ Γ ∗, there ex-
ists a (possibly empty) set χ(t) of contingent time-points such that every strategy
θ ∈ Θ(t) can be thwarted by a situation that is consistent with (1) no new contin-
gent executions before time t; and (2) the execution of all of the contingent time-
points in χ(t) at time t. Now, suppose Γ ∗ were empty. Then let t ∈ (nowψ, Tu) ⊆ Γ
be arbitrary; and consider the following strategy for Agnes: wait until the time
t, or the execution of the next contingent time-point, whichever happens first. If
no contingent time-points happen to execute before time t, then let t′ = t; other-
wise, let t′ be the time at which the first contingent time-point executed. In either
case, since t′ ∈ Γ , but t′ 6∈ Γ ∗, there could not be a single set χ(t′) as described
earlier. Therefore, there would have to be at least two strategies, θ1 and θ2, in
Θ(t′) whose thwarting would require two different sets of contingent time-points
executing at time t′. Agnes could then choose to follow whichever strategy, θ1 or
θ2, was not thwarted by the execution events that occurred at time t′. Since that

Dynamic Controllability via Timed Game Automata 41

chosen strategy could only have been thwarted by execution events which did not
occur, it must be a winning strategy, which is a contradiction. Therefore Γ ∗ 6= ∅.

Next, let T ∗u = inf{t | t > nowψ and t 6∈ Γ ∗}. Consider the possibility that
T ∗u = nowψ. Then for any t > nowψ, there exists a t′ such that nowψ < t′ < t and
t′ 6∈ Γ ∗. Let Agnes wait until the time of the next contingent execution, say at
time t > nowψ. Then there exists a time t′ strictly between nowψ and t such that
t′ 6∈ Γ ∗. In that case, there exist strategies θ1 and θ2 in Θ(t′) whose thwarting
situations required different sets of contingent executions at time t′ < t. Since no
such contingent executions occurred, Agnes can simply choose whichever strategy
has thereby become a winning strategy, yielding a contradiction. Therefore, T ∗u >
nowψ.

There are now three cases to consider:

Case 1: T ∗u = Tu, but Tu 6∈ Γ . Suppose that for all t ∈ (nowψ, Tu), χ(t) = ∅.
In other words, for each t ∈ (nowψ, Tu), every θ ∈ Θ(t) can be thwarted by
situations in which no contingent time-points execute at or before time t. But
that implies that every θ ∈ Θ(Tu) can be thwarted by situations in which
no contingent time-points execute before time Tu and, hence, that Tu ∈ Γ , a
contradiction. Therefore, it must be that for some t∗ ∈ (nowψ, Tu), χ(t∗) 6= ∅.
Let Vera’s RTED∗ decision be (t∗, χ(t∗)).

Case 2: T ∗u = Tu ∈ Γ . Suppose that T ∗u 6∈ Γ ∗. Then there must be two strate-
gies, θ1 and θ2, in Θ(T ∗u) that can only be thwarted by situations involving
two different sets of contingent time-points at time T ∗u . But then Agnes could
simply wait until time T ∗u to see which of the two strategies was not thwarted,
to yield a winning strategy. But that is a contradiction. Therefore, T ∗u ∈ Γ .
Now, suppose that χ(T ∗u) = ∅. That is, every strategy in Θ(T ∗u) can be thwarted
by situations that do not involve any new contingent executions at or before
T ∗u . Let Agnes employ the following strategy: wait until the next contingent
execution. Suppose it happens at some time t > T ∗u . By the definition of Tu
and the fact that Tu ∈ Γ , it follows that there must be some t′ strictly between
Tu and t such that t′ 6∈ Γ . But then there must be a strategy θ ∈ Θ(t′) whose
thwarting requires the execution of a contingent time-point before time t′ < t.
Since no such execution occurred, Agnes can employ θ as a winning strategy,
which is a contradiction. Thus, χ(T ∗u) 6= ∅. Vera’s RTED∗ decision can then
be (T ∗u , χ(T ∗u)).

Case 3: T ∗u < Tu. As in Case 2, it follows here that T ∗u ∈ Γ ∗. Now, let t be
any time such that T ∗u < t < Tu. Let Agnes wait until the next contingent
execution or the time t, whichever comes first. Let t† be that time. By the
definition of T ∗u as an infemum, and the fact that T ∗u ∈ Γ ∗, it follows that
there is some t′ strictly between T ∗u and t† such that t′ 6∈ Γ ∗, but t′ ∈ Γ (since
t′ < Tu). But then there exist strategies θ1 and θ2 in Θ(t′) whose thwarting
situations require different sets of contingent time-points to execute at time
t′ < t† ≤ t. Since no such contingent executions occurred, Alice can simply
choose whichever strategy has thereby become a winning strategy, yielding a
contradiction. Therefore, it cannot be that T ∗u < Tu.

Only Cases 1 and 2 avoid a contradiction; and in each of those cases generates a
decision for Vera of the form ∆u = (t, χ), where χ is a set of contingent time-points
that are to be executed at time t if Agnes does not execute any time-points at or
before t. It remains to show that all possible outcomes of the decisions of Agnes

42 Cimatti, Hunsberger, Micheli, Posenato and Roveri

and Vera result in a schedule that can be obtained by following a strategy R in
some thwarting situation ωR.

First, suppose Agnes uses a wait decision. In that case, the contingent time-
points in χ will be executed at time t. By the construction of the χ set (cf. the
definition of Γ ∗), it follows that all strategies in Θ(t), of which wait is one, can
be thwarted by situations that are consistent with this outcome. Similar remarks
apply to Agnes using a (Tf , χf) decision where Tf > t.

Second, suppose Agnes uses a (Tf , χf) decision where Tf ≤ t. Then the partial
outcome will involve the execution of the executable time-points in χf at time
Tf ≤ t, but not the contingent time-points in χ. Now, since Tf ≤ t, it follows that
Tf ≤ T ∗u . Thus, for each time t′ < Tf , all strategies in Θ(t′)—of which, Agnes’
(Tf , χf) is one—must be thwartable by situations involving no new contingent
time-points before time t′. But then, for any t† < Tf , there is some t′ such that
t† < t′ < Tf , from which it follows that no contingent time-points need be executed
at or before t†. Thus, no contingent time-points need be executed before time Tf .
However, thwarting the strategies that involve the execution of the time-points in
χf at time Tf may require the execution of some contingent time-points at time
Tf . A single set of such time-points must be sufficient; otherwise, it would contra-
diction the thwartability of those strategies. That set of time-points constitutes
an instantaneous reaction by Vera.

Thus, in all cases, Vera has a decision (t, χ) available—that only depends on
ψ, not on R—that, together with a possible instantaneous reaction, generates
an outcome according to the two-player game semantics that is identical to an
outcome that is obtained by following an RTED-based strategy in a thwarting
situation. ut

B The Semantics of Dynamic Controllability for CDTNUs

In this section, the dynamic execution semantics for STNUs is extended to accom-
modate the features of CSTNUs and DTNUs, resulting in a dynamic execution
semantics for CDTNUs. For a CDTNU, (T , C, L,OT ,O, P,L), the agent seeks a
strategy for executing the free time-points in Tf ⊆ T whose labels are in accor-
dance with the current scenario, such that all constraints in C will necessarily be
satisfied no matter what durations the environment “chooses” for the contingent
links in L, and no matter which truth values the environment “chooses” for the
propositions in P . The decisions that constitute such a strategy can depend only
on execution events that occurred in the past; however, the strategy can be dy-
namic in that it may react—after a positive delay—to observations of contingent
time-points executing or propositional letters being assigned truth values.

First, the partial schedules from Defn. 9 are extended to accommodate ob-
servation time-points. In this context, an extended partial schedule is not only a
possibly partial assignment of values to time-points, but also a possibly partial
assignment of truth values to propositional letters.

Definition 23 (Extended Partial Schedule) An extended partial schedule for
a CDTNU, (T , C, L,OT ,O, P,L)), is (ψ, σ), where ψ is a partial schedule (i.e., a
partial assignment to time-points in T , as in Definition 9), and σ is a set of tuples
of the form (X, b) where X ∈ OT ∩ TPs(ψ) is an already-executed observation

Dynamic Controllability via Timed Game Automata 43

time-point, and b is either > or ⊥ (i.e., true or false). The label for the extended
partial schedule, (ψ, σ), is the conjunction of literals determined by the truth values
in σ. For example, if p is true in σ, and q is false, and those are the only Boolean
variables that have been observed so far according to ψ and σ, then the label for
(ψ, σ) is p¬q.

Intuitively, ψ records the execution times for those time-points that have al-
ready executed; and σ records the truth values of the propositional letters cor-
responding to observation time-points that have already executed. In short, the
extended partial schedule represents all of the information on which execution
decisions may depend.

The RTEDs available to Agnes in the case of a CDTNU are essentially the
same as in the case of STNUs with one minor condition: the time-points in the set
χf must have labels that are subsumed by the label associated with the current
extended partial schedule. In other words, the labels on the time-points must be
true given the label for the extended partial schedule. For example, if the label of
(ψ, σ) is p¬q, then the labels of any time-points in the set χf must be one of: the
empty label, p, ¬q, or p¬q.

Definition 24 (RTED, for Agnes, in a CDTNU) Let (ψ, σ) be an extended
partial schedule, where ψ is respectful. An RTED for Agnes has one of two forms:
wait or (Tf , χf). A wait decision is applicable if at least one contingent time-point,
C, is active in ψ (i.e., C’s activation time-point has already been executed, but C
has not). A (Tf , χf) decision (i.e., “If nothing happens before time Tf , execute
the time-points in χf at time Tf”) is applicable if Tf > nowψ, χf is a non-empty
subset of unexecuted free time-points (i.e., χf 6= ∅ and χf ∩ TPs(ψ) = ∅) and for
each X ∈ χf , the label L(X) is subsumed by the label of (ψ, σ).

For Vera, there are two significant changes:

(1) For an RTED?: the execution times for contingent time-points must accom-
modate the case of contingent durations that may fall anywhere within a union
of disjoint intervals.

(2) For an instantaneous reaction: in cases where the partial outcome of the de-
cisions by Agnes and Vera includes the execution of observation time-points,
then for each such observation time-point, Vera must instantaneously specify
a truth value for the corresponding Boolean propositional letter.

In the case of an RTED?, it is convenient to call the union of distinct intervals for
a given contingent duration an extended execution window.

Definition 25 (RTED?, for Vera, in a CDTNU) Let (ψ, σ) be an extended
partial schedule, where ψ respects at least one situation. A before-or-at RTED
(RTED?) has one of two forms: wait or (Tu, χu). A wait decision is only applicable
if no contingent time-points are currently active in ψ. A (Tu, χu) decision (i.e.,
“If nothing happens before-or-at time Tu, I shall execute the time-points in χu at
time Tu”) is applicable only if Tu > nowψ; χu is a non-empty subset of currently-
activated contingent time-points each of whose extended execution window includes
Tu; and the extended execution window for each currently-activated contingent
time-point that is not in χu extends beyond the time Tu.

44 Cimatti, Hunsberger, Micheli, Posenato and Roveri

Definition 26 (Instantaneous reaction, for Vera, in a CDTNU) Let (ψ, σ)
be an extended partial schedule in which at least one contingent time-point C is
activated and whose extended execution window includes nowψ (i.e., one of the
possible durations for C would result in C executing at nowψ). An instantaneous
reaction is a decision (by Vera) to: (1) execute a set of such time-points at time
nowψ; and (2) assign truth values for each of the observation time-points in ψ that
are not yet assigned in σ. If nowψ happens to be the last possible time at which a
currently-activated contingent time-point C can execute, then the instantaneous
reaction must include C.

The partial and full outcomes for these augmented decisions for Agnes and
Vera are analogous to those in the case of an STNU. The principal difference
is that if a partial outcome involves the execution of an observation time-point,
then Vera’s instantaneous reaction must assign a truth value to the corresponding
Boolean propositional letter.

Note that the disjunctive constraints that may appear within the set C of
constraints in the CDTNU do not affect the execution semantics at all. In other
words, they do not affect the execution decisions that are available to either Agnes
or Vera. Instead, they represent constraints that Agnes wants to satisfy.

With these changes, the definition of dynamic controllability for CDTNUs is
analogous to that for STNUs.

C Proof of Correctness for the STNU-to-TGA Encoding

This section presents the theoretical results that confirm the correctness of the
STNU-to-TGA encoding given in Section 4.2.1. It also explicates the correspon-
dence between strategies for STNUs and their TGA counterparts.

Theorem 2 Let S = (T , C,L) be any STNU; and let Θ be the encoding of S as
a TGA, as described in Section 4.2.1. Then Θ correctly captures the execution
semantics for S in the sense that any sequence of partial schedules that can be
generated for S according to the execution semantics for STNUs corresponds to a
run for Θ that can be generated by following its transitions according to the TGA
semantics.

Proof The following invariant is proved by induction. Each respectful partial sched-
ule ψ that can be generated for S corresponds to a state of Θ in which the location
is vera, cδ = 0, nowψ = t̂, for each executed time-point X, ψ(X) = t̂ − tX, and
for each unexecuted time-point Y , ψ(Y) = t̂. For the base case, the initial partial
schedule, ψ0 = ∅, corresponds to the initial state of Θ in which the location is
vera, all clocks are at zero, and all time-points are unexecuted. Note that ψ0 is
trivially respectful.

Now, suppose that ψ is a respectful partial schedule that can be generated
according to the execution semantics for STNUs, and that satisfies the hypothe-
sized invariant. Let θ be the corresponding state of the TGA. Since cδ = 0, the
only transitions that are immediately enabled are the loops whereby contingent
time-points are executed. These transitions, if taken, correspond to the instanta-
neous reaction decisions for Vera, in which a set Υu of one or more contingent
time-points can be executed simultaneously. However, suppose that Vera does not

Dynamic Controllability via Timed Game Automata 45

make any such transitions at cδ = 0. Once cδ > 0, both Agnes and Vera have
transitions that they could make at any time. For example, Vera might decide to
execute one or more contingent time-points when cδ = 3. That would correspond
to an RTED?-based decision, (Tu, χu), where Tu = nowψ + 3 and χu contains the
time-points to be executed. Since each transition by Vera resets cδ to 0, Agnes is
unable to interrupt Vera’s simultaneous execution of contingent time-points. The
resulting outcomes are equivalent to the partial schedules that arise in Cases (1a)
and (1b) of Definition 18. The guards on Vera’s transitions, which enforce the du-
ration bounds for the contingent links, ensure that the resulting partial schedule
is respectful. Also, when Vera’s sequence of “simultaneous” transitions complete,
t̂ equals the time of the most recent execution (i.e., nowψ + 3). In addition, for
each newly executed time-point, C, the clock tC is set to 0, ensuring that t̂ − tC

equals the execution time of C. Since both clocks will never again be reset, this
difference remains fixed forever.

On the other hand, suppose that Agnes decided to execute the time-points in χf
at an earlier time, say, nowψ+2. This would correspond to her making the transition
to the agnes location and instantaneously executing the time-points in χf at that
time and, then, immediately returning to the vera location. Since agnes is an
urgent state, the global clock equals nowψ + 2 when the return transition is made.
This sequence of transitions corresponds to the partial outcomes in Cases (2a)
and (2b) in Definition 18, where Agnes’ decision is (Tf , χf), where Tf = nowψ + 2.
Furthermore, if Vera chooses to instantaneously execute some contingent time-
points at that same time, nowψ + 2, that will correspond to an instantaneous
reaction, as specified in Definition 17.

Finally, if at time nowψ, Agnes and Vera both decided to execute some time-
points at time nowψ+1, then the STNU semantics ensures that Agnes’ time-points
will be executed, and that Vera will be able to instantaneously react, if she chooses.
This corresponds to Agnes’ transition having priority over Vera’s transition. Agnes
transitions to the agnes state, executes her time-points, and returns to the vera

state, with the global clock ending up at nowψ + 1.

Since, in all cases, the resulting state of the TGA satisfies the desired invariant
property, the result is proven. ut

Theorem 3 Let S be any STNU; let Θ be the encoding of S; and let σ be a winning
TGA counter-strategy for Agnes. Then there is an equivalent RTED-based strategy
for Agnes that will ensure the satisfaction of all constraints in S no matter how
the contingent durations turn out.

Proof Let S, Θ and σ be as described in the statement above. Therefore, σ :
L × RX>=0 → Actu ∪ {λ}, where Actu is the set of uncontrollable actions (for
Agnes).

Suppose the TGA has just entered the state, (vera, v), where v represents
the vector of clock values. As has already been noted, for any time-point X and
associated clock cX: (1) before X executes, cX = t̂; and (2) after X executes,
cX < t̂ and the fixed difference, t̂ − cX, equals the time at which X executed.
Thus, the vector of clock values specifies a partial schedule, ψ.

Now, suppose that nowψ < t̂ (i.e., that some positive time has elapsed since the
last execution event in ψ). The only way that could have happened is if the state
(vera, v) had been preceded by one or more useless loops (i.e., loops using only the

46 Cimatti, Hunsberger, Micheli, Posenato and Roveri

gain and pass transitions to go back and forth between vera and agnes without
executing any time-points). Let (vera, v′) be the state immediately preceding the
first such useless loop. Then for some positive ε, v = v′ + ε (i.e., the clock values
in v are ε units larger than their corresponding values in v′). And by construction,
nowψ = v′(t̂).

Next, let D be the minimum time that can elapse from v before the strat-
egy σ recommends a non-trivial transition to the agnes location. That is: D =
min{d | σ(vera, v′+d) 6= λ, σ(agnes, v′+d) 6= pass}. Let v0 = v′+D. The unique
sequence of execution transitions at the agnes location is: τ1 = σ(agnes, v0),
τ2 = σ(agnes, v1), τ3 = σ(agnes, v2), . . ., where each vi+1 is the same as vi, ex-
cept that the clock for the just-executed time-point is 0 in vi+1. This sequence
must terminate, since there are only finitely many time-points, and each can
be executed only once. If τm is the last execution transition, it follows that
pass = σ(agnes, vm). That transition leads back to the state, (vera, vm), where
vm is the same as v′, except that the clocks for the time-points executed by the
transitions, τ1, . . . , τm, are all zero in vm.

Next, let Tf = v0(t̂) be the global time at which σ recommends its first non-
trivial transition to agnes; and let χf be the set of time-points that correspond
to the execution transitions, τ1, . . . , τm. Then (Tf , χf) is an RTED for ψ that
corresponds to what the strategy σ recommends at (vera, v′). Note that Vera may
decide to instantaneously react by executing some contingent time-points also at
time Tf , an outcome that is sanctioned by the execution semantics for STNUs.
Finally, it may happen that Vera decides to intervene before time Tf arrives, by
executing one or more contingent time-points and effectively generating a new
partial schedule, ψ∗. In that case, the same procedure could be applied to ψ∗ to
generate an appropriate RTED. Since the guard on the transition from vera to
agnes requires a positive time delay, that RTED is properly prohibited from any
kind of instantaneous reaction (by Agnes).

This procedure provides a mapping from any (vera, v) state that is reachable
following the winning strategy σ. In addition, the sequences of partial schedules
generated by following the RTEDs correspond to runs that can be produced by σ.
Thus, the complete schedules generated by the RTEDs are guaranteed to satisfy
all STNU constraints assuming Vera observes the bounds on all contingent links.

ut

