
KRATOS – A Software Model Checker for SystemC

A. Cimatti, A. Griggio∗, A. Micheli, I. Narasamdya, and M. Roveri

Fondazione Bruno Kessler — Irst
{cimatti,griggio,amicheli,narasamdya,roveri}@fbk.eu

Abstract. The growing popularity of SystemC has attracted research aimed at
the formal verification of SystemC designs. In this paper we present KRATOS, a
software model checker for SystemC. KRATOS verifies safety properties, in the
form of program assertions, by allowing users to explore two directions in the
verification. First, by relying on the translation from SystemC designs to sequen-
tial C programs, KRATOS is capable of model checking the resulting C programs
using the symbolic lazy predicate abstraction technique. Second, KRATOS imple-
ments a novel algorithm, called ESST, that combines Explicit state techniques
to deal with the SystemC Scheduler, with Symbolic techniques to deal with the
Threads. KRATOS is built on top of NUSMV and MATHSAT, and uses state-of-
the-art SMT-based techniques for program abstractions and refinements.

1 introduction

Formal verification of SystemC has recently gained significant interests [20, 14, 19, 24,
17, 23, 10]. Despite its importance, verification of SystemC designs is hard and chal-
lenging. A SystemC design is a complex entity comprising a multi-threaded program
where scheduling is cooperative, according to a specific set of rules [22], and the exe-
cution of threads is mutually exclusive.

In this paper we present KRATOS, a new software model checker for SystemC.
KRATOS provides two different analyses for verifying safety properties (in the form of
program assertions) of SystemC designs. First, KRATOS implements a sequential anal-
ysis based on lazy predicate abstraction [16] for verifying sequential C programs. To
verify SystemC designs using this analysis, we rely on the translation from SystemC to
a sequential C program, such that the resulting C program contains both the mapping
of SystemC threads in the form of C functions and the encoding of the SystemC sched-
uler. Second, KRATOS implements a novel concurrent analysis, called ESST [10], that
combines Explicit state techniques to deal with the SystemC Scheduler, with Symbolic
techniques, based on lazy predicate abstraction, to deal with the Threads.

In this paper we describe the verification flow of KRATOS, its architecture, and
the novel functionalities that it features. Due to space limit, the results of an ex-
perimental evaluation that compares KRATOS with other model checkers on vari-
ous benchmarks can be found in [9]. KRATOS is available for download at https:
//es.fbk.eu/tools/kratos.

∗ Supported by Provincia Autonoma di Trento and the European Community’s FP7/2007-2013
under grant agreement Marie Curie FP7 - PCOFUND-GA-2008-226070 “progetto Trentino”,
project ADAPTATION.

This is a pre-print version of the homonymous paper appearing in CAV 2011.
Copyright (c) 2011 belongs to Springer. 



2 Verification Flow

The flow of SystemC verification using KRATOS consists of two directions, as
shown in Figure 1. The first direction relies on the translation of a SystemC de-
sign into a sequential C program, such that the C program contains a function mod-
elling each of the SystemC threads and the encoding of the SystemC scheduler.

T1 T2 T3

Scheduler

Sequential C program

T1 T2 T3

Threaded C program

T1
ART

T2
ART

T3
ART

Abstract Reachability
Forest (ARF)

Scheduler (Explicit)

SystemC design

Thread T3

Thread T2

Thread T1

ESSTLazy abstraction

Kratos

Concurrent analysisSequential analysis

Pinapa

Tree (ART)
Abstract Reachability

SystemC2C

Fig. 1. The SystemC verification flow.

KRATOS implements a sequential analysis that
model checks sequential C programs. This se-
quential analysis is essentially lazy predicate ab-
straction [16], which is based on the construction
of an abstract reachability tree (ART) by unwind-
ing the control-flow automaton (CFA) of the C
program. The ART itself represents the reachable
abstract state space. The sequential analysis that
KRATOS implements is not restricted to the re-
sults of SystemC translations, but it can also han-
dle general sequential C programs.

The second direction uses the concurrent anal-
ysis, which is the ESST algorithm, to model
check SystemC designs. Similar to the first direc-
tion, in the second direction the SystemC design
is translated into a so-called threaded C program
that contains a function for modelling each Sys-
temC thread. But, unlike the sequential C program
above, the encoding of the SystemC scheduler is no longer part of the threaded C pro-
gram. The SystemC scheduler itself is now part of the ESST algorithm and its states
are tracked explicitly. ESST is based on the construction of an abstract reachability
forest (ARF) where each tree in the forest is an ART of the running thread. The ESST
algorithm is described in detail in [10].

Translations from SystemC designs into sequential and threaded C programs are
performed by SYSTEMC2C, a new back-end of PINAPA [21].

3 Architecture

The architecture of KRATOS is shown in Figure 2. It consists of a front-end that includes
a parser for C programs, a type checker, a CFA encoder, and static data-flow analyses
and optimization phases.

The parser translates a textual C program into its abstract syntax tree (AST) rep-
resentation. The AST is then traversed by the type checker to build a symbol table.
The CFA encoder builds a CFA or a set of CFAs from the AST. Currently, the CFA
encoder provides three encodings: small-block encoding (SBE), basic-block encoding
(BBE), and large-block encoding (LBE). In SBE each block consists only of at most
one statement. In BBE each block is a sequence of statements that is always entered
at the beginning and exited at the end. In LBE, as described in [1], each block is the
largest directed acyclic fragment of the CFA. LBE improves performances by reducing
the number of abstract post image computation [1].



ART ARF

Counter−example builder Refiner

Lazy abstraction

NuSMV

Symbol table

Type checkerASTParser

C program

CFA encoder

CFAs

Analyses and

Optimizations

CFAs

Scheduler
state

Thread and event 

extractor

Sequential analysis

Precision

Node expander

Abs. Structure

Concurrent analysis

Node expander

Precision

Scheduler

Primitive
executor

Abs. Structure

MathSAT

Fig. 2. The architecture of KRATOS.

Static analyses and optimizations implemented by KRATOS include a simple cone-
of-influence reduction that removes nodes of CFAs that do not lead to the error nodes,
dead-code elimination, and constant propagation.

The sequential analysis is a reimplementation of the same analysis performed by ex-
isting software model checkers based on the lazy predicate abstraction, like BLAST [2]
and CPACHECKER [3]. The analysis consists of an abstraction structure, a precision,
and a node expander. The abstraction structure contains the representation of abstract
states that label ART nodes. A state typically consists of a location (or node) in CFA,
a formula denoting the abstract data state, and a stack that keeps track of the trace of
function calls. The structure also implements the coverage criteria that stop the expan-
sion of ART nodes. The precision encodes the mapping from locations in CFA to sets
of predicates that have been discovered so far. These predicates are relevant predicates
used to compute the abstract post images. The node expander expands an ART node
by (1) unwinding each of the outgoing edges of the CFA node in the state labelling the
ART node, and (2) computing the abstract post image of the state with respect to the
statement labelling the outgoing edge. The node expander currently implements depth-
first search (DFS), breadth-first search (BFS), and topological ordering strategies for
expanding nodes.

For the concurrent analysis, we extract the threads and events from the input
threaded C program to create the initial state of scheduler. In this analysis, the node
expander is also equipped with a scheduler and a primitive executor. The scheduler ex-
plores all possible schedules given a scheduler state as an input. The primitive executor
executes calls to functions that modify the state of scheduler. The executor only assumes
that the actual arguments of the calls are known statically.



We remark that, the architecture of the concurrent analysis does not assume that the
scheduler is a SystemC scheduler. In fact any implementation of a cooperative scheduler
with one exclusively running thread in each schedule can be plugged into the analysis.

The sequential and concurrent analyses construct, respectively, the ART and the
ARF by following the standard counterexample-guided abstraction refinement (CE-
GAR) loop [13]. When the analyses cannot reach any error location, then the analyzed
program is safe (no assertion violation can occur). When the analyses reach an error
location, then the counterexample builder builds a counterexample by constructing the
path from the node labelled with the error location to the root of the ART, or to the
root of the first ART in the ARF. If the counterexample is non-spurious, in the sense
that the formula representing it is satsifiable, then the analyzed program is unsafe. If
the counterexample is spurious, then it is passed to the refiner. The refiner tries to refine
the precision by discovering new predicates that need to be kept track of by using the
unsatisfiable core or interpolation based techniques as described in [15].

KRATOS is built on top of an extended version of NUSMV [7], which is tightly inte-
grated with the MATHSAT SMT solver [5]. KRATOS relies on NUSMV and MATHSAT
for abstraction computation, for representing the abstract state within each ART, for
the coverage check, for checking the satisfiability of expressions representing counter
examples, and for extracting the unsatisfiable core and for generating sequence of in-
terpolants from counterexample paths.

4 Novel Functionalities

KRATOS offers the following novel functionalities.

ESST algorithm. The translation from SystemC designs to sequential C programs
enables the verification of SystemC using the “off-the-shelf” software model check-
ing techniques. However, such a verification is inefficient because the abstraction of
SystemC scheduler is often too aggresive, and thus requires many refinements to re-
introduce the abstracted details. The ESST algorithm attacks such an inefficiency by
modelling the scheduler precisely, and, as shown in [10], outperforms the SystemC ver-
ification through sequentialization.

Partial-order reduction. Despite its relative effectiveness, ESST still has to explore a
large number of thread interleavings, many of which are redundant. Such an exploration
degrades the run time performance and yields high memory consumptions. Partial-order
reduction (POR) is a well-known technique for tackling the state explosion problem by
exploring only a representative subset of all possible interleavings. Recently a POR
technique has been incorporated in the ESST algorithm [11]. KRATOS currently imple-
ments a POR technique based on persistent set, sleep set, and a combination of both.

Advanced abstraction techniques. KRATOS implements cartesian and boolean ab-
straction techniques that are implemented in BLAST and CPACHECKER. In addition,
KRATOS also implements hybrid predicate abstraction that integrates BDDs and SMT
solvers, as described in [12], and structural abstraction, as described in [8].

Translators. KRATOS is capable of translating the sequential and threaded C to the
input languages of other verification engines. For example, KRATOS can translate se-



quential a C program into an SMV model. By such a translation, one can then use the
model checking algorithms implemented by, for example, NUSMV [7] to verify the C
program. In particular one can experiment with the bounded model checking (BMC) [4]
technique of NUSMV that does not exist in KRATOS.

Under-approximation. KRATOS is also able to generate under-approximations for quick
bug hunting. To this extent, KRATOS has recently featured a translation from threaded
C programs into PROMELA models [6]. Such a translation enables the verification by
under-approximations using the SPIN model checker [18].

Transition encoding. Each block in the CFA is translated into a transition expressed
by a NUSMV expression. We have observed that different encodings for transitions
can affect the performance of KRATOS. In particular, the encoding for the transitions
affect the performance of MATHSAT in terms of abstraction computations and also lead
MATHSAT to yielding different interpolants, and thus different discovered predicates.
KRATOS provides several different encodings for transitions. They differs in the number
of variables needed to encode the transition of each block of the CFA, from the fact that
intermediate expressions are folded or not, or whether NUSMV if-then-else expressions
are used to compactly represent intermediate expressions. Details about these encodings
can be found in the user manual downloadable from the KRATOS’ website. Depending
on the nature of the problem, the availability of several encodings allows users to choose
the most effective one for tackling the problem.

5 Conclusion and Future Work

We have presented KRATOS, a software model checker for SystemC. KRATOS pro-
vides two different analyses for verifying SystemC designs: sequential and concurrent
analyses. The sequential analysis, based on the lazy predicate abstraction, verifies the
C program resulting from the sequentialization of the SystemC design. The concur-
rent analysis, based on the novel ESST algorithm, combines explicit state techniques
with lazy predicate abstraction to verify threaded C program that models a SystemC
design. The results of an experimental evaluation, reported in [9], shows that ESST
algorithm, for the verification of the considered SystemC benchmarks, outperforms all
the other approaches based on sequential analysis. On the considered pure sequential
benchmarks, the sequential analysis shows better performance than other state-of-the-
art approaches for the majority of the benchmarks.

For future work, we will extend KRATOS to handle a larger subset of C constructs
like data structures, arrays and pointers (which are currently treated as uninterpreted
functions) and to be able to take into account the bit-precise semantics of operations. We
will investigate how to extend the ESST approach to deal with symbolic primitive func-
tions to generalize the scheduler exploration. We would also like to combine the over-
approximation analysis, based on the lazy abstraction, with an under-approximation
analysis, based on PROMELA translation or BMC. Finally, we will consider to extend
the ESST techniques to the verification of concurrent C programs from other applica-
tion domains (e.g. robotics, railways), where different scheduling policies have to be
taken into account



References
1. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model check-

ing via large-block encoding. In: FMCAD. pp. 25–32. IEEE (2009)
2. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast.

STTT 9(5-6), 505–525 (2007)
3. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate Abstraction with Adjustable-Block En-

coding. In: FMCAD. pp. 189–197 (2010)
4. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without bdds. In:

TACAS. LNCS, vol. 1579, pp. 193–207. Springer (1999)
5. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT 4 SMT

Solver. In: CAV. LNCS, vol. 5123, pp. 299–303. Springer (2008)
6. Campana, D., Cimatti, A., Narasamdya, I., Roveri, M.: An Analytic Evaluation of SystemC

Encodings in Promela, submitted for publication
7. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: A New Symbolic Model

Checker. STTT 2(4), 410–425 (2000)
8. Cimatti, A., Dubrovin, J., Junttila, T., Roveri, M.: Structure-aware computation of predicate

abstraction. In: FMCAD. pp. 9–16. IEEE (2009)
9. Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.: KRATOS – A Soft-

ware Model Checker for SystemC. Tech. rep., FBK-irst (2011), https://es.fbk.eu/
tools/kratos

10. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: a Software Model
Checking Approach. In: FMCAD. pp. 51–59 (2010)

11. Cimatti, A., Narasamdya, I., Roveri, M.: Boosting Lazy Abstraction for SystemC with Partial
Order Reduction. In: TACAS. pp. 341–356. LNCS (2011)

12. Cimatti, A., Franzén, A., Griggio, A., Kalyanasundaram, K., Roveri, M.: Tighter integration
of BDDs and SMT for Predicate Abstraction. In: Proc. of DATE. pp. 1707–1712. IEEE
(2010)

13. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

14. Große, D., Drechsler, R.: CheckSyC: an efficient property checker for RTL SystemC designs.
In: ISCAS (4). pp. 4167–4170. IEEE (2005)

15. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In:
POPL. pp. 232–244. ACM (2004)

16. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL. pp. 58–70
(2002)

17. Herber, P., Fellmuth, J., Glesner, S.: Model checking SystemC designs using timed automata.
In: CODES+ISSS. pp. 131–136. ACM (2008)

18. Holzmann, G.J.: Software model checking with SPIN. Advances in Computers 65, 78–109
(2005)

19. Kroening, D., Sharygina, N.: Formal verification of SystemC by automatic hardware/soft-
ware partitioning. In: MEMOCODE. pp. 101–110. IEEE (2005)

20. Moy, M., Maraninchi, F., Maillet-Contoz, L.: Lussy: A toolbox for the analysis of systems-
on-a-chip at the transactional level. In: ACSD. pp. 26–35. IEEE (2005)

21. Moy, M., Maraninchi, F., Maillet-Contoz, L.: Pinapa: an extraction tool for SystemC descrip-
tions of systems-on-a-chip. In: EMSOFT. pp. 317–324. ACM (2005)

22. Tabakov, D., Kamhi, G., Vardi, M.Y., Singerman, E.: A Temporal Language for SystemC.
In: FMCAD. pp. 1–9. IEEE (2008)

23. Tabakov, D., Vardi, M.Y.: Monitoring Temporal SystemC Properties. In: MEMOCODE. pp.
123–132 (2010)

24. Traulsen, C., Cornet, J., Moy, M., Maraninchi, F.: A SystemC/TLM Semantics in Promela
and Its Possible Applications. In: SPIN. LNCS, vol. 4595, pp. 204–222. Springer (2007)


