
Dynamic Controllability of Disjunctive Temporal Networks:
Validation and Synthesis of Executable Strategies

Alessandro Cimatti
Fondazione Bruno Kessler

Trento, 38123, Italy
cimatti@fbk.eu

Andrea Micheli
FBK and University of Trento

Trento, 38123, Italy
amicheli@fbk.eu

Marco Roveri
Fondazione Bruno Kessler

Trento, 38123, Italy
roveri@fbk.eu

Abstract

The Temporal Network with Uncertainty (TNU) modeling
framework is used to represent temporal knowledge in pres-
ence of qualitative temporal uncertainty. Dynamic Controlla-
bility (DC) is the problem of deciding the existence of a strat-
egy for scheduling the controllable time points of the network
observing past happenings only.
In this paper, we address the DC problem for a very general
class of TNU, namely Disjunctive Temporal Network with
Uncertainty. We make the following contributions. First, we
define strategies in the form of an executable language; sec-
ond, we propose the first decision procedure to check whether
a given strategy is a solution for the DC problem; third we
present an efficient algorithm for strategy synthesis based
on techniques derived from Timed Games and Satisfiability
Modulo Theory. The experimental evaluation shows that the
approach is superior to the state-of-the-art.

Introduction
Temporal Networks (TN) are a common formalism to rep-
resent and reason about temporal constraints over a set of
time points (e.g. start/end of activities in a scheduling prob-
lem). Since the introduction of Simple Temporal Network
(STN) (Dechter, Meiri, and Pearl 1991), several extensions
have been introduced (Tsamardinos and Pollack 2003). Vi-
dal and Fargier (Vidal and Fargier 1999) introduced TN with
uncertainty (TNU), where some of the time points are not
under the control of the scheduler, but can only be observed.
In this setting, the problem is to find assignments to the con-
trollable time points so that the constraints can be solved
for all the choices of the uncontrollable time points. Sev-
eral variants are defined, e.g. strong controllability (SC) and
weak controllability (WC). Here we focus on Dynamic Con-
trollability (DC): a TNU is DC if there exists a strategy to
schedule the controllable time points such that all the con-
straints are satisfied, and such that it can observe the uncon-
trollable time points once they happened. DC is arguably
the most widely applicable problem in TNU, with applica-
tions ranging from planning and scheduling of space satel-
lites (Frank et al. 2001) to robotics (Effinger et al. 2009).

DC is a very hard problem. The vast majority of the
literature is subject to two limiting assumptions. First, it

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

deals with DC in the restricted setting of Simple Tempo-
ral Networks with Uncertainty (STNU-DC). Second, the fo-
cus is on the decision problem (Morris 2006), and not on
the explicit generation of an executable strategy. This re-
quires the execution, at run-time, of complex scheduling
algorithms (Hunsberger 2014). Unfortunately, this is unac-
ceptable in many applications. For example, the deployment
of a scheduling algorithm directly on-board of the controlled
system may be subject, in a safety-critical setting, to compu-
tational or certification constraints.

In this paper we tackle the DC problem for TNUs lift-
ing these restrictions. We consider the expressive class of
Disjunctive Temporal Networks with Uncertainty (DTNU),
where disjunctions are allowed in both the problem require-
ments (called free constraints) and in the assumptions on
the environment behavior (called contingent links). The key
idea is to approach the problem by focusing on the exe-
cutable strategies from the start. We make the following
contributions. First, we define a language to express easily
executable, dynamic strategies that are sufficient for every
DTNU-DC problem. Second, we present the first algorithm
for validating a given strategy: the strategy is checked for
being dynamic and for always yielding a valid schedule of
the controllable time points. Third, we propose an algorithm
to decide DTNU-DC. If the problem admits a solution, the
algorithm has the unique property of synthesizing a correct-
by-construction, dynamic executable strategy. The proposed
techniques are derived from a fast Timed Game Automata
(TGA) solving algorithm (Cassez et al. 2005), augmented
with a pruning procedure based on Satisfiability Modulo
Theory (SMT) (Barrett et al. 2009). We implemented sev-
eral variants of the validation and synthesis algorithms, and
we carried out an extensive experimental evaluation. The
synthesis procedure exhibits practical applicability, solv-
ing problems of significant size, and demonstrating orders-
of-magnitude improvements with respect to (Cimatti et al.
2014a), that is the only other approach to decide DTNU-DC.
Related Work. The DTNU formalism with the relative
controllability problems was originally proposed in (Ven-
able and Yorke-Smith 2005), it has been used in several
works (Peintner, Venable, and Yorke-Smith 2007; Venable
et al. 2010), but no general solution for DTNU-DC is
presented. The only approach for solving DTNU-DC is
in (Cimatti et al. 2014a). It generalizes the STNU-DC en-

This is a pre-print version of the homonymous paper appearing in AAAI 2016.



coding to timed games of (Cimatti et al. 2014b) to DTNU
and conditional networks. The approach allows for the gen-
eration of strategies in form of stateless controllers, that
can be executed without on-line reasoning or constraint
propagation. The focus is mainly theoretical, and the ap-
proach is completely unpractical, being unable to solve
even moderate-size DTNU-DC problems. The DC prob-
lem has been widely studied in the STNU subclass (Morris,
Muscettola, and Vidal 2001; Morris and Muscettola 2005;
Morris 2006; Hunsberger 2009; 2010; 2013; 2014). All
these works represent dynamic strategies implicitly, as net-
works managed by an on-line reasoning algorithm (Mor-
ris 2006; Hunsberger 2013; Morris 2014). Finally, we men-
tion (Cimatti, Micheli, and Roveri 2015b; 2015a) that apply
SMT techniques to two other poroblems in the context of
DTNU, namely strong and weak controllability.

Problem definition
A DTNU models a situation in which a set of time points
need to be scheduled by a solver, but some of them can only
be observed and not executed directly.
Definition 1. A DTNU is a tuple 〈T , C,L〉, where: T is a
set of time points, partitioned into controllable (Tc) and un-
controllable (Tu); C is a set of free constraints: each con-
straint ci is of the form,

∨Di

j=0 xi,j − yi,j ∈ [`i,j , ui,j ], for
some xi,j , yi,j ∈ T and `i,j , ui,j ∈ R ∪ {+∞,−∞}; and
L is a set of contingent links: each li ∈ L is of the form,
〈bi,Bi, ei〉, where bi ∈ Tc, ei ∈ Tu, and Bi is a finite set of
pairs 〈`i,j , ui,j〉 such that 0 < `i,j < ui,j <∞, j ∈ [1, Ei];
and for any distinct pairs, 〈`i,j , ui,j〉 and 〈`i,k, ui,k〉 in Bi,
either `i,j > ui,k or ui,j < `i,k.

Intuitively, time points belonging to Tc are time decisions
that can be controlled by the solver, while time points in Tu
are under the control of the environment. A similar subdi-
vision is imposed on the constraints: free constraints C are
constraints that the solver is required to fulfill, while con-
tingent links L are the assumptions that the environment is
assumed to fulfill. Given a constraint c ∈ C we indicate with
TP (c) the set of time points occurring in c, and given any
subset of the time points P ⊆ T , we indicate with C(P )
the set {c | TP (c) ⊆ P} of the constraints that are defined
on time points in P . Each uncontrollable time point ei is
constrained by exactly one contingent link to a controllable
time point bi called the activation time point of ei that we in-
dicate with α(ei). A temporal network without uncertainty
(TN) is a TNU with no contingent links and no uncontrol-
lable time points. Consistency is the problem of checking if
there exists an assignment to the time points that fulfills all
the free constraints. A DTNU without uncertainty is called
DTN (Tsamardinos and Pollack 2003).

A TNU is a game between the solver and the environment:
the solver must schedule all the controllable time points ful-
filling the free constraints, the environment schedules the
uncontrollables fulfilling the contingent links. The network
is said to be controllable if it is possible to schedule all the
controllable time points for each value of the uncontrollable
ones without violating the contingent constraints. Depend-
ing on the observability that the solver has, different degrees

a b

c

d
[1, 6]

[7, 10]

[5, 20]

[0, 2]

[0,
10]

∨

T =̇ {a, b, c, d}
C =̇ {b− a ∈ [1, 6],

c− a ∈ [7, 10],

d− b ∈ [0, 2] ∨
d− c ∈ [0, 10]}

L =̇ {〈a, {〈5, 20〉}〉, d}

Figure 1: An example DTNU.

of controllability have been defined. In this paper we fo-
cus on the DC problem, that consists in deciding the exis-
tence of a strategy for scheduling all the controllable time
points that respect the free constraints in every situation al-
lowed by the contingent constraints. Differently from weak
controllability, a dynamic strategy is not allowed to observe
the future happenings of uncontrollable time points. Due to
space constraints we do not report the full DC semantics
that can be found in (Morris, Muscettola, and Vidal 2001;
Hunsberger 2009). For the sake of this paper it suffices to say
that a problem is DC if and only if it admits a dynamic strat-
egy expressed as a map from partial schedules to Real-Time
Execution Decisions (RTEDs). A partial schedule represents
the current state of the game, that is the set of time points that
have executed so far and their timing. Each RTED has one
of two forms: Wait or 〈t, χ〉. A Wait decision means “wait
until some uncontrollable time point happens”; a (t, χ) de-
cision stands for “if nothing happens before time t, schedule
all the time points in χ at time t. A strategy is valid if, for
every possible execution of the uncontrollable time points,
all the controllable time points get scheduled in such a way
that all the free constraints are satisfied.

Two different DC semantics exist in the literature, de-
pending on whether the solver is allowed to react to an un-
controllable happening by immediately scheduling a con-
trollable time point (Morris 2006) or a positive amount of
time is required to pass (Hunsberger 2009). In this paper
we adopt the first one, but the following results should be
adaptable to the other case as well. Figure 1 shows an ex-
ample DTNU. The problem has a single uncontrollable time
point d that uncontrollably happens between 5 and 20 time
units after a happens. A dynamic strategy σex for the prob-
lem reads as follows. First, schedule a at time 0, then wait 5
seconds. If d interrupts the waiting, immediately schedule b
then wait until 7 and then schedule c, otherwise immediately
schedule b (at time 5) and wait until time 10. If d interrupts
the waiting, wait until 7 and then schedule c, otherwise im-
mediately schedule c and then wait for d to happen.

Strategy Representation and Validation
Existing approaches for the STNU-DC problem, produce
strategies as constraint networks that need to be scheduled
at run-time by an executor. These networks encode a pos-
sibly infinite number of RTEDs. Following the approach
in (Cimatti et al. 2014b), it is possible to produce a strategy
that is executable but unstructured: given a state of the exe-
cution (set of time points scheduled and a condition on their



timing) the strategy associates an action to execute. We pro-
pose a language to express readily executable, closed-form
strategies that closely resembles the structure of a program.
Clocks and Time Regions. We use clocks and time re-
gions (Maler, Pnueli, and Sifakis 1995) as a basic data struc-
ture for representing sets of partial schedules. Given a TNU
〈T , C,L〉, let T =̇ {x | x ∈ T } be a set of non-negative
real-valued clock variables, one for each time point in T .
We define the time regions of T as the set Φ(T ) of all pos-
sible formulae expressed by the following grammar, where
./∈ {<,≤, >,≥,=}.
φ ::= > | ⊥ | x ./ k | x− y ./ k | φ ∧ φ | φ ∨ φ | ¬φ

Intuitively, a time region represents a set of assignments to
the clock variables in T . We assume the usual intersection
(φ∧ψ), union (φ∨ψ) and complement (¬φ) operations are
defined; in addition, we define the following operations.

φ1 =̇ ∃δ ≤ 0.φ[x→ (x+ δ) | x ∈ T ]

φ$ =̇ ∃δ ≥ 0.φ[x→ (x+ δ) | x ∈ T ]

ρ(φ, x) =̇ (∃x.φ) ∧ x = 0

where φ[x → y] indicates the substitution of term x with
term y in φ. Given a time region φ, φ 1 is the result of
letting time pass indefinitely, while φ$ is the time region
from which it is possible to reach φ by letting time pass.
The ρ(φ, x) operation unconditionally assigns the x clock
to value 0 (clock reset). These are common operations in
Timed Automata analysis: each operator yields a time re-
gion in Φ(T ). Efficient and canonical implementations of
time regions exists (Bengtsson 2002). Given a time region
φ, we define the set FV (φ) of its free variables as the set
of the clocks that occur in the definition of the region. We
use a clock for each time point and encode the constraints
in such a way that the clock measures the time passed since
the time point was scheduled. For example, a time region
x − y ≤ 2 ∧ x = 3 indicates that 3 time units ago (at time
t− 3), x was scheduled and y has been scheduled at least 1
time unit ago.
Strategy Language. We define the following language to
compactly express strategies in a readily executable form.
Definition 2. A strategy σ is either •,w(ψ, e1 : σ1, · · · , en :
σn,a: σa) where ψ is a time region, each ei ∈ Tu and each
σx is a strategy or s(b);σ′ where b ∈ Tc and σ′ is a strategy.

We have a single wait operator that waits for a condition
ψ to become true. The wait can be interrupted by the obser-
vation of an uncontrollable time point or when the waited
condition becomes true (represented by the a symbol). For
each possible outcome, the strategy prescribes a behavior,
expressed as a sub-strategy. In addition to wait statements,
we also have the s(b);σ′ construct that prescribes to im-
mediately schedule the b time point (we assume no time
elapses), and then proceed with the strategy σ′. The • oper-
ator is a terminator signaling that the strategy is completed.
For example, the strategy σex for the DTNU in Figure 1,
expressed in this language is as follows:
σex=̇s(a);w(a = 5,d : s(b);w(a = 7,a: s(c); •),

a: s(b);w(a = 10, d :w(a ≥ 7,a: s(c); •),
a: s(c);w(⊥, d : •))).

Init 〈{a},⊥, a = 0,⊥〉 〈{a},>, a < 7, a = 7〉

〈{a, d},⊥, d = 0 ∧ a < 7,⊥〉

〈{a},⊥, a = 7,⊥〉

· · ·
· · ·

· · ·· · ·

· · · · · ·

s(a)

s(
b)

s(
c) s(

b)

s(
c)

w(ā = 7)

w
(ā

=
8
)

w(ā
=

9)

d

a

Figure 2: A portion of S for Figure 1 DTNU.

Theorem 1. A DTNU is DC if and only if it admits a solution
strategy expressible as per Definition 2.

Proof. (Sketch) Following the approach in (Cimatti et al.
2014a), we know that a memory-less TGA strategy exists
for every DC problem. Our strategy can be seen as a repre-
sentation of the computation tree of that TGA strategy.

This syntax for strategies is similar to a loop-free pro-
gram. In practice, one needs to represent the program al-
lowing common strategies in different branches to be shared
to avoid combinatorial explosion of the strategy size. For
the sake of this paper we keep the simpler tree representa-
tion. The structure of the program explicitly represent the
different branches that the strategy may take: each computa-
tion path from the beginning of the strategy to • is a way of
scheduling the time points in a specific order.

A strategy σ needs two characteristics for being a solution
to the DTNU-DC problem: dynamicity and validity. σ is dy-
namic if it never observes future happenings and is valid if it
always ends in a state where all the controllable time points
are scheduled and all the free constraints are satisfied, re-
gardless of the uncontrollable observations. Using our strat-
egy syntax, we can syntactically check if a strategy is dy-
namic: it suffices to check, for each branch of the strategy,
that each wait condition ψ is defined on time points that have
been already started or observed. Formally, this can be done
by recursively checking the free variables of each ψ:

dyn(P, •) =̇>;

dyn(P, s(b);σ′) =̇ dyn(P ∪ {b}, σ′);
dyn(P,w(ψ, e1 : σ1, · · · , en : σn,a: σa)) =̇

FV (ψ) ⊆ P ∧ dyn(P, σa) ∧
∧n
i=1 dyn(P ∪ {ei}, σi).

Proposition 1. A strategy σ is dynamic if and only if
dyn(∅, σ) = >.

Validation. We now focus on the problem of validating a
given strategy. We first present a search space that encodes
every possible strategy for a given TNU. The search space
S is an and-or search space where the outcome of a wait
instruction is an and-node (the result of a wait is not con-
trollable by the solver), while all the other elements of the
strategy language are encoded as or-nodes (they are con-
trollable decisions). The search space is a directed graph
S =̇ 〈V,E〉, where E is a set of labeled edges and each node
in V is a tuple 〈P,w, φ, ψ〉 where P ∈ 2T is a subset of the
time points representing the time points that already hap-
pened in the past, w is a Boolean flag marking the state as



a waiting state, while both φ and ψ are time regions. φ rep-
resents the set of temporal configuration in which the state
can be; ψ is set only in and-nodes to record the condition
that has been waited for. The graph is rooted in the node
Init =̇ 〈∅,⊥,>,⊥〉.

Given a time region φ we define the time region that spec-
ifies the waiting time for a condition ψ as a time region
ω(φ, ψ) =̇ φ1 ∧¬(ψ1). This is the set of time assignments
that the system can reach from any assignment compatible
with φ while waiting for condition ψ. Moreover, for each
uncontrollable time point e, we define the uc(e) time region
as

∨
〈`,u〉∈B α(e) ≥ ` ∧ α(e) ≤ u where 〈α(e), B, e〉 ∈ L.

Intuitively, uc(e) is the portion of time in which the uncon-
trollable time point e might be observed, according to the
contingent links. In fact, this is a transliteration of a contin-
gent link into a time region.

The transitions in E are defined as follows (we indicate
transitions with arrows between two states):
• 〈P,⊥, φ,⊥〉 s(b)−−→ 〈P ∪ {b},⊥, ρ(φ, b),⊥〉 with b ∈ Tc \ P ;
• 〈P,⊥, φ,⊥〉 w(ψ)−−−→ 〈P,>, ω(φ, ψ), ψ〉;
• 〈P,>, φ, ψ〉 e−→ 〈P ∪ {e},⊥, ρ(φ, e) ∧ uc(e),⊥〉 where
e ∈ Tu \ P and α(e) ∈ P ;

• 〈P,>, φ, ψ〉 a−→ 〈P,⊥, ψ,⊥〉.
Nodes having w = ⊥ are considered or-nodes, while the
others are and-nodes. Intuitively, the first rule allows to im-
mediately start a controllable time point if we are not in a
state resulting from a wait. The second rule allows the solver
to wait for a specific condition ψ, the resulting state is an
and-node because the outcome of the wait can be either a
timeout (a) or an uncontrollable time point. The last two
rules explicitly distinguish these outcomes. We remark that,
when a time point x is scheduled or observed, the corre-
sponding clock x is reset and the set P keeps record of the
time points that have been scheduled or observed.

This search space directly mimics the structure of our
strategies, and as such it is infinite due to the infinite number
of conditions that can be waited for. Nonetheless, this space
is conceptually clean and very useful to approach the valida-
tion problem. Figure 2 depicts the first portion of the search
space S for the running example problem in Figure 1.

The procedure for validating a strategy is shown in Algo-
rithm 1: the algorithm navigates the search space S apply-
ing the strategy prescriptions (thus finitizing the search) and
checking that each branch invariably yields to a state where
all the free constraints are satisfied and all the time points are
scheduled. The algorithm starts from Init and recursively
validate each branch of the strategy. The region Ψ, used in
line 2, is defined as the region where all the free constraints
are satisfied, as follows:

Ψ =̇
∧
ci∈C

∨
j∈[0,Di]

`i,j ≤ yi,j − xi,j ≤ ui,j .

A time region implies Ψ if it satisfies all the free constraints.
Clocks measure the time passed since the corresponding
time point has been executed, therefore a constraint x− y ∈
[`, u] is represented by the region ` ≤ y − x ≤ u. The
procedure executes a strategy starting from Init; then it re-
cursively explores the search space enforcing the control-
lable decisions of the strategy σ in or-nodes (lines 3-8) and

Algorithm 1 Dynamic Strategy Validation Procedure
1: procedure VALIDATE(σ, 〈P,w, φ, ψ〉)
2: if P = T then return (σ = • and ISVALID(φ→ Ψ))
3: if w = ⊥ then
4: if σ = s(b);σ′ then
5: return VALIDATE(σ′, 〈P ∪ {b},⊥, ρ(φ, b),⊥〉)
6: else if σ = w(ψ, e1 : σ1, · · · , en : σn,a: σa) then
7: return VALIDATE(σ, 〈P,>, ω(φ, ψ), ψ〉)
8: else return⊥ . σ = •, but not all time points scheduled
9: else . σ =̇ w(ψ, e1 : σ1, · · · , en : σn,a: σa)

10: for all 〈P,w, φ, ψ〉 ê−→ 〈P ∪ {ê},⊥, φ ∧ uc(ê),⊥〉 do
11: if @i.ê = ei then return⊥ . ê it is not handled by σ
12: c := VALIDATE(σi, 〈P ∪ {ê},⊥, ρ(φ, e) ∧ uc(e),⊥〉)
13: if c = ⊥ then return⊥
14: if ISUNSATISFIABLE(ψ) then return> . The strategy waited for⊥
15: return VALIDATE(σa, 〈P,⊥, ψ,⊥〉)

branching to explore all possible uncontrollable outcomes
in and-nodes (lines 9-15). It is easy to see that the algorithm
takes a number of steps that is linear in the size of the strat-
egy because at each step the strategy gets shortened (two
steps are needed to shorten a wait).
Proposition 2. The validation procedure in Algorithm 1 is
sound and complete.

Synthesizing Dynamic Strategies
We now discuss synthesis of dynamic strategies that are
valid by construction. In theory, one could do a classical and-
or search in the space S: if the search terminates, the trace of
the search itself is a valid strategy. However, the infinity of
the space makes this choice impractical. The problem with
the search space S is the presence of explicit waits: while the
length of each path is finite, the arity of each or-node is in-
finite. We take inspiration from (Cimatti et al. 2014a) where
the authors use TGAs to encode the DC-DTNU problem:
the idea of the approach is to exploit the expressiveness of
the TGA framework by casting the DC problem to a TGA
reachability problem.
TGA Reachability. A Timed Game Automaton (TGA)
(Maler, Pnueli, and Sifakis 1995) augments a classical finite
automaton to include real-valued clocks: transitions may in-
clude temporal constraints, called guards. Each transition
may also include clock resets that cause specified clocks to
take value 0 after the transition. Each location may include
an invariant and the set of transitions is partitioned into con-
trollable and uncontrollable transitions.
Definition 3. A TGA is a tuple, A = (L, l0, Act,X,E, I),
where: L is a finite set of locations; l0 ∈ L is the initial
location;Act is a set of actions partitioned into controllable
Actc and uncontrollable Actu; X is a finite set of clocks;
E ⊆ L×Φ(X)×Act×2X ×L is a finite set of transitions;
and I : L→ Φ(X) associates an invariant to each location.

A TGA can be used to model a two-player game be-
tween an agent and the environment, where the agent con-
trols the controllable transitions, and the environment con-
trols the uncontrollable transitions. Invariants are used to
define constraints that must be true while the system is



in a location. A reachability game is defined by a TGA
and a subset of its locations called the goal (or winning)
state (Cassez et al. 2005). The state-of-the-art approach for
solving TGA Reachability Games is (Cassez et al. 2005). Es-
sentially, the algorithm optimistically searches a path from
the initial state to a goal state and then back-propagates
under-approximations of the winning states using the timed-
controllable-predecessor operator. The approach terminates
if the initial state is declared as winning or if the whole
search space has been explored.
Synthesis via TGA. We retain the basic idea behind the
search space S of explicitly representing the possible order-
ings in which the time points may happen in time, but we
exploit the TGA semantics to implicitly represent the con-
trollable waits. In TGA time can elapse inside locations until
a transition (controllable or uncontrollable) is taken. This is
conceptually analogous to wait for a condition allowing to
take a controllable transition, provided that the wait may be
interrupted by an uncontrollable transition. We model un-
controllable time points as uncontrollable transitions with
appropriate guards, and controllable time points as control-
lable transitions. Unfortunately, this yields a TGA whose
size is exponential in the number of time points: we need
a state for each subset of T . We represent this exponential
TGA implicitly, by constructing transitions and constraints
on-demand while exploring the symbolic state space using
an algorithm derived from (Cassez et al. 2005). The im-
plicit expansion allows us to construct only the transitions
that are needed for the strategy construction process. The
implicit TGA is defined as 〈2T , ∅, T , T , E, ∅〉. Each sub-
set of the time points is a location, the initial state is the
empty set where no time points have been scheduled. We
have an action label for each time point: a controllable time
point yields a controllable transition, an uncontrollable cor-
responds to an uncontrollable transition. The set of clock
variables is T as in the space S and the transition relation E
is defined as:
• P b, fc(P,b)−−−−−−→ P ∪ {b} with b ∈ Tc, if b 6∈ P ;

• P
e, uc(e)
999999K P ∪{e} with e ∈ Tu, if α(e) ∈ P and b 6∈ P .

where each transition implicitly resets the time point corre-
sponding to its label and the fc(P, b) and uc(e) functions
define the guards of the transitions.

fc(P, b) =̇

{
> iff C(P ) = ∅∧
ci∈C(P )

∨
j∈[0,Di]

yi,j − xi,j ∈ [`i,j , ui,j ]

Algorithm 2 reports the pseudo-code of the approach de-
rived from (Cassez et al. 2005). We write s1

x
=⇒ s2 for either

s1
x−→ s2 or s1

x
99K s2, where no distinction is needed.

Each time an expansion is required (lines 3, 10 and, im-
plicitly, 12) the relative portion of the search space is cre-
ated. The algorithm works as follows. win is a map that
records the winning portion of visited states. The wait set
contains the transitions in the symbolic space that need to
be analyzed and is initialized with the outgoing transitions
of the initial state (line 3). The PUSH and PPUSH functions
insert a set of elements in the set (the difference between
the two is explained later), while the POP function picks

Algorithm 2 Synthesis algorithm
1: procedure SYNTHESIZE( )
2: wait := ∅; dep := ∅;win := ∅
3: PPUSH(wait, {〈∅,>〉 x

=⇒ 〈P, φ1〉 | 〈∅,>〉 x
=⇒ 〈P, φ〉})

4: while wait 6= ∅ ∧ win[〈∅,>〉] = ⊥ do
5: (s1

x
=⇒ s2) := POP(wait) . 〈P1, φ1〉 = s1, 〈P2, φ2〉 = s2

6: if not ALREADYVISITED(s2) then
7: dep[s2] := {s1

x
=⇒ s2}

8: if P2 = T and ISSATISFIABLE(φ2 ∧Ψ) then
9: win[s2] := φ2 ∧Ψ; PUSH(wait, {s1

x
=⇒ s2})

10: else PPUSH(wait, {s2
x
=⇒ 〈P3, φ31〉 | s2

x
=⇒ 〈P3, φ3〉})

11: else
12: win∗ := BACKPROPAGATEWINNING(s1)
13: if win∗ 6⊂ win[s1] then
14: win[s1] := win[s1] ∨ win∗; PUSH(wait, dep[s1])

15: dep[s2] := {s1
x−→ s2}

16: ifwin[〈∅,>〉] = ∅ then return⊥ else return MKSTRATEGY(dep,win)

and removes an element from the set. The dep map is used
to record the set of explored edges that lead to a state. W
keep track of the visited states and perform two different
computations depending on whether a new state is encoun-
tered or a re-visit happens (line 6). In the first case, the algo-
rithm explores the state space forward, in the other it back-
propagates winning states. In the forward expansion, the dis-
tinction between controllable and uncontrollable transitions
is disregarded until a goal state is reached. When a goal state
is found, the winning states are recorded in the winmap and
the transition leading to the goal is re-added to the wait set
to trigger the back-propagation of the winning states. The
back-propagation computes the set of winning states and up-
dates the win table if needed. Then, all the explored edges
leading to s1 are set to be re-explored because their winning
states may have changed due to this update of the winnings
of s1. Line 16 decides the controllability of the problem: if
the initial state has no winning subset, it means that all the
search space has been explored and no strategy exists.

Theorem 2 (Correctness). With no pruning, the algorithm
terminates and returns ⊥ if and only if the TNU is not DC.

Proof. (Sketch) The search space explored by algorithm is
a restriction of the one for the TGA in (Cimatti et al. 2014a)
that captures the DC problem semantics. We remove states
whose winning set is empty as they cannot satisfy the free
constraints: this is a sound and complete restriction.

MKSTRATEGY builds a strategy as per Definition 2 using
a forward search guided by the dep andwinmaps: wait con-
ditions are extracted by the projection of the winning states.
Ordered and Unordered states. So far, we considered the
discrete component (the TGA location) of each state as a set
P . This is conceptually clean but it might be a drawback.
For example, suppose the search decides to schedule the se-
quence A then B then C and then, by backpropagation of
the winning, this is insufficient to find a strategy. The search
can now explore the path A then C then B computing the
relative winning states. If we disregard the order of states, it
is possible (depending on temporal constraints) that a state



0 500 1000 1500 2000 2500

Number of solved instances

Ti
m

e 
(s

ec
)

0.1

1

10

102

TIGA−NNF
TIGA−DNF
Unordered−NoH
Ordered−NoH
Unordered−SMT
Ordered−SMT

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Ordered−SMT

TI
G

A
−D

N
F

0.5 1 5 10 50 100 300 600

0.5

1

5

10

50

100

300

600 + + +++ +++ ++++ ++ ++++ ++ ++ +++ ++ + ++ + ++ ++ +++++ + ++ ++ +++ ++ ++ ++++ + ++ +++ ++ + ++++ ++ ++ ++ ++++ +++ ++ ++ + ++ ++ ++ + +++ ++ +++ ++ + ++++ ++ ++ +++ ++++ + + + ++ + +++ + ++++ +++ + ++ ++ ++ +++ + +++++ ++ +++++ + +++ ++ +++ ++ ++ +++++ + + ++++ + + +++ +++ ++ ++++ + ++ +++ + +++ ++ ++ +++ ++ +++ +++ ++ +++ + + ++++ ++ + + +++ + +++ ++ + ++ ++++ ++ + + ++ ++ +++ + ++++++ + +++ ++ ++ + + +++ +++ ++ ++ + ++ ++ ++++ ++ ++ ++ ++ + ++ + ++ + ++ ++++ ++ ++ + ++ ++ + ++ ++ ++++ + ++ ++ ++ ++ + + ++ +++ + ++ +++ + +++ ++ +++ +++ + ++ +++ ++ ++ ++ +++ + ++ + + +++ ++ ++ + ++ ++ +++ ++ +++ ++ +++ ++ ++ +++ ++ + ++ + +++ ++ + +++ ++ ++ ++ ++ +++ ++ +++ +++ ++ ++ ++ +++ ++ ++ ++ + +++++ + +++ + ++ +++ ++ ++ ++++ ++ ++ ++ + + +++ ++ + ++ +++ + ++ ++ ++ ++++ + ++ + ++ + ++ + ++ +++ + ++ +++ ++ ++ ++ +++ ++++ ++++ ++++ + ++ ++ + ++ ++ ++ ++ + ++++ ++ +++ + +++ ++ + ++ + ++ +++++ ++ ++ ++ +++ + ++ +++ ++ + ++ + +++ + +++ + ++ +++ ++ ++ ++++ +++ + + ++ ++ +++ + + + +++ ++++++ ++ ++ + ++++ ++ +++ ++ + +++++ ++ +++++ ++ ++ +++ ++++ + ++ +++ +++ + ++ +++ +++ +++ ++ + ++ ++ + ++ ++ + + +++ + ++ ++ +++ ++++ + ++ +++ ++ + + ++ +++ ++ + ++ ++ ++ ++ + ++++ ++ ++ +++ +++ ++ ++++ + +++ ++ +++ ++ +++ + + ++ ++++ ++ ++ ++ + +++ + + +++ + ++ ++ ++ + + +++ ++ ++++ + +++ +++ + ++ +++ + ++++ + +++ ++ + ++ ++ ++++ +++ +++ +++ ++ ++ ++ ++ +++ ++ + +++ ++ ++++ +++ ++ +++ ++ ++ +++ +++ ++ + ++ + ++ + ++ ++++ + ++ ++++ ++ +++ +++ + ++ ++ + +++ ++ +++++ ++ +++++ +++++ + + ++ ++ + ++ + ++ + +++ + ++ + ++ ++ ++ ++++ + +++ ++ ++ + ++++ + +++ ++ ++++ +++ +++++ + ++ + +++ +++++ ++ + + ++ +++ + +++ + ++ + ++ +++ +++++ ++ +++ ++ ++ ++ +++ +++ + ++++ ++++ ++ + ++ ++++ ++ +++ + ++ ++ ++++ ++ ++ ++++ ++++++ +++ +++ + +++ +++ ++ ++ ++ +++ +++ + ++ +++ +++ ++ ++++ ++ + + ++ ++++++ +++ +++ +++ ++++ + ++ ++ ++ ++ ++++ + + ++ ++ ++ ++ ++ + ++++ ++ ++ ++ + ++ ++ ++ ++++ ++ ++ +++ + + ++++ + ++++++ +++ + ++++++ ++ ++ ++ ++ ++ + +++ +++ ++ +++ + ++++ + ++ + ++++ + ++ ++ ++++ + ++ +++ +++ ++ +++ ++ ++ ++++ ++ ++ ++++ + +++ ++ ++ + +++ + + ++ +++ +++ + ++ + ++ + +++ ++ ++ +++ + + +++ +++ ++++ ++ ++ + ++ +++ ++ ++++ ++ ++ +++ ++ +++ + + +++ ++ ++ + ++++++ + +++++ ++ + ++ + +++ ++ + ++ + + ++++ + ++ ++++ ++ +++ + ++ ++ +++ ++ +++ ++ ++ ++ ++ ++++++ ++ + +++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++++ +++ ++++++ ++ ++ ++++ ++ ++ ++ + TO
MO

TO M
O

DC
Non−DC

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+
+

+

+
+

+

+
+

+

+

+
+

++

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

++

+

+

++

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++

++

+

+
+

+

+

++
+

+

++++

+

+

++

+

+

++

+

+

+

+
+

+

++
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+
+

++

+

+

+

+

+

+

+

++

+++

+

+ +

+

++

+

+

+

+
++

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+
+ +

+
++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

++

+

+
+

+

+

+

+
+

+

+

+
+

+

+ +

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+
+

+

+++
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++

+
++

+

+

+

+
+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+++++

+

+

+

++

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+

+

+

+

++

+

+

+++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

++

+

+

+

+

+

+

++

+

+++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+
+

+

+

+ +

+

+++
+

+

+

+

+

+

+

+

+

+

++

+

+

+ +

+

++

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

++
+

+

+

+
+++

+
+

+

+

+

+

+
+
+

+

+

+

+
+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+++
+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

++
+

+

+ +

+

+

+

+

+

++

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+
+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+
+

+
+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+
+

++++

+

+

+
+

+

+

+
+

+

+

++

+
+

+

++

++

+

+
+

+++

+

+

+
+

+

+

+

+

+

+

+

+

+

++

+

++

+

+

+

+

+

+
+

++

+

+

+

++ +

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+ +
+

+

+

+
+

+

+

++

+

+

+

+

++

++
+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+
+

++

+

+
++

+

+

+

+

++

++

+

+

+

+

+

+

++

+

+

+

+++

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

++

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+
+

+ +
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+
++

+
+

+

+

+++

+

+

+

+

+

+
+

+

+

+
++

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+ +

+

++

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

+
+++

+

+

+

+

+

+
+

+

+

++

+

+
+

+++

+

+

+

+

+

+

++

+

++
+

+

+

+

+

+
+++

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+
+

++

+

+

+

+
+

+

+

+

+

+
+

++

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

++
++

+
+

+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+

+
+

+

+

+
+

+
+

+
+

++

+

+

+

+

++

++
+

+
+

+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+ ++

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+
+

++

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+
+

+
++

+

+

+

+

+

++

+

+

+

+

+

++

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+

+

++++

+ +

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

++

+

+

+
+

+

+

+

+
+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+
+

++

+

+

+
+

+++

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+

+
+

+

+
+

+

+

+
+

++

++

+

+

+

++

+

++
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

++

+

+

+
+

+

+

+
+

+

+

+

++

+

+

+

+

+
+

+
+

+

+

+

+

+

+

++
+

+

+
+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+
+ +

+

+
+

+

+

+

++

+

+

+

+
+

+

+

+

+

++
+

+

+
+

++

+

+

++

++

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+
+

+
+

++

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+ +

+

+

+

+

++

+

+

+

+++

+

+

+

+

++

++

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+ +

+
+

+

+

+
++

+

+

+
+
+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

++

++++

+
++

+

+

+

+
+

+

+

+

+

++

+

+

++

+

+

+ +

+

+

+

Ordered−SMT

U
no

rd
er

ed
−S

M
T

0.5 1 5 10 50 100 300 600

0.5

1

5

10

50

100

300

600 + + ++ +++ ++ ++++ + +++ ++ ++ ++ +++ ++++ + ++ + ++++ + + +++ ++ ++ + + ++ + + ++ + +++ + ++ ++ + +++ + ++ +++ ++ ++ ++ + ++ + + ++ ++ + +++ + ++ ++ ++ + ++ +++ + ++++ ++ +++ + ++ ++ ++ + ++ ++ ++ + ++ +++ + ++ ++ ++ ++ +++ ++ +++ ++ ++ ++ + ++ ++ ++
++

++

TO
MO

TO M
O

DC
Non−DC

Figure 3: Results for the experimental evaluation. All the plots are in logarithmic scale and measures are in seconds.

〈{A,B,C}, φ〉 is explored in both cases, causing its winning
region to be updated twice (resulting in the disjunction of the
winning of the two visits). This is not a correctness issue, but
a lot of disjunctions are introduced, and disjunctions heavily
impact the performance of time region manipulations.

A solution that produces a variant of the algorithm is to
consider P as a sorted set, hence distinguishing between
different orderings of time points. This increases the theo-
retical search space size (that become more than factorial in
the number of time points:

∑|T |
i=1 i!) but possibly simplifies

the time region management. The ordered exploration dis-
tinguishes states with the same set of scheduled time points
but different scheduling order. In the example, we would
have two final states because 〈〈A,B,C〉, φ〉 is different from
〈〈A,C,B〉, φ〉. Hence, the winnings of 〈〈A,B,C〉, φ〉 are
not updated. This moves some of the complexity from tem-
poral disjunctive reasoning to the discrete search itself.
Pruning Unfeasible States. The use of an explicit repre-
sentation (ordered or unordered) of the past time points al-
lows for an important optimization: the pruning of unfeasi-
ble paths. When the algorithm adds a new, unexplored tran-
sition to the wait set (lines 3 and 10), the ordering of the
time points resulting from the transition may be inconsis-
tent with the free constraints. For example in the DTNU
of Figure 1, any path starting with time point b is never
going to satisfy the free constraints, hence the expansion
〈∅,>〉 b−→ 〈{b}, b = 0〉 can be discarded. The PPUSH func-
tion (short for “pruning push”) is demanded to insert a set of
elements in the wait set, but it may discard unfeasible tran-
sitions, working as a filter. This pruning greatly reduces the
search space especially in TNUs with many constraints.

We identified a pruning method for PPUSH, using a con-
sistency check. For each transition s1

x
=⇒ 〈P2, φ2〉, we check

if, disregarding uncertainty, it is possible for the time points
in P2 to be executed before all the time points in T \P2. For
this reason we convert the input DTNU in a DTN (without
uncertainty) by considering each uncontrollable time point
as controllable, and each contingent link as a free constraint.
We then add the following to the DTN constraints:

Cadd =̇ {y − x ∈ [0,∞] | x ∈ P, y ∈ T \ P}.
If the resulting problem is consistent, then the transition is

added to the wait set, otherwise it is discarded. Note that in
lines 14 and 23 we do not use PPUSH because we are not
exploring new transitions but re-visiting (already-checked)
transitions. This pruning only removes incompatible order-
ings, hence it maintains soundness and completeness. Since
this check is performed many times, an incremental algo-
rithm is needed for good performance. We exploit the en-
coding of DTNs in Satisfiability Modulo Theory (SMT)
in (Cimatti, Micheli, and Roveri 2015b).

If we use ordered states, the added constraint can be
strengthened to represent the order encoded in the state.

Cadd=̇{xi+1 − xi ∈ [0,∞] | 〈x1, · · ·xn〉=P, i ∈ [1, n−1]}
∪ {y − xn ∈ [0,∞] | 〈x1, · · ·xn〉 = P, y ∈ T \ P}

Intuitively, we exploit the total order stored within states to
build a stronger constraint: we force the order of time-points
using [0,∞] constraints and assert that all the other time
points occur after the last time point in the ordering. The
added constraints are linear in the number of time points,
while in the unordered case they are quadratic.

Experimental Evaluation
We implemented the validation and synthesis algorithms in
a tool called PYDC. The solver, written in Python, uses
the PyDBM (Bulychev 2012) library to manipulate time
regions and the PYSMT (Gario and Micheli 2015) in-
terface to call the MathSAT5 (Cimatti et al. 2013) SMT
solver. We analyzed four versions of our synthesis algo-
rithm: UNORDERED-NOH, that is the synthesis algorithm
with no pruning; ORDERED-NOH, that is the synthesis
algorithm with no pruning that considers ordered states,
UNORDERED-SMT and ORDERED-SMT that use incre-
mental SMT solving for pruning the unfeasible paths. The
benchmark set (Cimatti, Micheli, and Roveri 2015a) is com-
posed by 3465 randomly-generated instances (1354 STNU,
2112 DTNU). All are known to be weakly controllable, but
only 2354 are (known to be) dynamically controllable. The
benchmarks range from 4 to 50 time points. The tool and
the benchmarks are available at https://es.fbk.eu/
people/amicheli/resources/aaai16.

We compare our approach against TIGA-NNF and
TIGA-DNF, that are the two encodings proposed



in (Cimatti et al. 2014a). These encoding are the only
available techniques able to solve the DTNU-DC prob-
lem. We use the UPPAAL-TIGA (Behrmann et al. 2007)
state-of-the-art TGA solver to solve the encoded game. The
results, obtained with time and memory limits set to 600s
and 10GB, are shown in Figure 3. For lack of space, we
do not discuss the performance of the validation check; we
remark it is negligible compared to synthesis.

We first notice that our synthesis techniques are vastly su-
perior to the TIGA-based approaches (cactus plot, left). The
approach is able to solve 2543 against the 799 of TIGA-
DNF, with difference in run-times of up to three orders of
magnitude (scatter plot, center). The cactus plot also shows
that the SMT-based pruning yields a significant performance
boost, both for the unordered case (from 1531 to 2289 solved
instances), and the ordered case (from 1552 to 2543). Fi-
nally, the scatter plot on the right shows that the ordered
case is vastly superior to the unordered one. Further inspec-
tion shows that UNORDERED-SMT explores an average of
2447.9 symbolic states, compared to the 95.8 of ORDERED-
SMT. In the latter case, the ordering information allows the
SMT solver to detect unfeasible branches much earlier.

Conclusions and Future Work
In this paper we tackled the problem of Dynamic Control-
lability (DC) for the general class of Disjunctive Temporal
Network with Uncertainty (DTNU). By considering strate-
gies in the form of an executable language, we obtain a rad-
ically different view on the problem. This paves the way to
two key contributions. We propose the first procedure to val-
idate whether a given strategy is a solution to the DC prob-
lem: this is a fundamental step for settings where strategies
are hand-written, or have been manually modified. Then,
we define a decision procedure for DTNU-DC, that is able
to synthesize executable strategies. At the core, we com-
bine techniques derived from Timed Games and Satisfia-
bility Modulo Theory. The experimental evaluation demon-
strates dramatic improvements wrt the state-of-the-art.

In the future, we will compare the run-time properties of
executable strategies (performance, footprint) with respect
to reasoning-based run-time execution (Hunsberger 2013;
Morris 2014). Moreover, we will explore the existence of
efficient subclasses of the DC-DTNU problem, e.g. by re-
stricting the structure of the strategies.

References
Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C. 2009.
Satisfiability modulo theories. In Handbook of Satisfiability. IOS
Press. 825–885.
Behrmann, G.; Cougnard, A.; David, A.; Fleury, E.; Larsen, K.;
and Lime, D. 2007. Uppaal-tiga: Time for playing games! In CAV.
121–125.
Bengtsson, J. 2002. Clocks, DBM, and States in Timed Systems.
Ph.D. Dissertation, Uppsala University.
Bulychev, P. 2012. The uppaal pydbm library —
http://people.cs.aau.dk/ adavid/udbm/python.html.
Cassez, F.; David, A.; Fleury, E.; Larsen, K. G.; and Lime, D. 2005.
Efficient on-the-fly algorithms for the analysis of timed games. In
CONCUR, 66–80.

Cimatti, A.; Griggio, A.; Schaafsma, B. J.; and Sebastiani, R. 2013.
The MathSAT5 SMT solver. In TACAS, 93–107.
Cimatti, A.; Hunsberger, L.; Micheli, A.; Posenato, R.; and Roveri,
M. 2014a. Sound and complete algorithms for checking the dy-
namic controllability of temporal networks with uncertainty, dis-
junction and observation. In TIME.
Cimatti, A.; Hunsberger, L.; Micheli, A.; and Roveri, M. 2014b.
Using timed game automata to synthesize execution strategies for
simple temporal networks with uncertainty. In AAAI.
Cimatti, A.; Micheli, A.; and Roveri, M. 2015a. An smt-based
approach to weak controllability for disjunctive temporal problems
with uncertainty. Artificial Intelligence 224:1–27.
Cimatti, A.; Micheli, A.; and Roveri, M. 2015b. Solving strong
controllability of temporal problems with uncertainty using smt.
Constraints 20(1):1–29.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49:61–95.
Effinger, R. T.; Williams, B. C.; Kelly, G.; and Sheehy, M. 2009.
Dynamic controllability of temporally-flexible reactive programs.
In ICAPS.
Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. E. 2001. Planning
and scheduling for fleets of earth observing satellites. In i-SAIRAS.
Gario, M., and Micheli, A. 2015. pySMT: a solver-agnostic library
for fast prototyping of smt-based algorithms. In SMT Workshop.
Hunsberger, L. 2009. Fixing the semantics for dynamic controlla-
bility and providing a more practical characterization of dynamic
execution strategies. In TIME, 155–162.
Hunsberger, L. 2010. A fast incremental algorithm for managing
the execution of dynamically controllable temporal networks. In
TIME, 121–128.
Hunsberger, L. 2013. A faster execution algorithm for dynamically
controllable stnus. In TIME, 26–33.
Hunsberger, L. 2014. A faster algorithm for checking the dynamic
controllability of simple temporal networks with uncertainty. In
ICAART.
Maler, O.; Pnueli, A.; and Sifakis, J. 1995. On the synthesis of
discrete controllers for timed systems. In STACS, 229–242.
Morris, P. H., and Muscettola, N. 2005. Temporal dynamic con-
trollability revisited. In AAAI, 1193–1198.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic control of
plans with temporal uncertainty. In Nebel, B., ed., IJCAI, 494–499.
Morgan Kaufmann.
Morris, P. 2006. A structural characterization of temporal dynamic
controllability. In CP. 375–389.
Morris, P. 2014. Dynamic controllability and dispatchability rela-
tionships. In CPAIOR, volume 8451, 464–479.
Peintner, B.; Venable, K. B.; and Yorke-Smith, N. 2007. Strong
controllability of disjunctive temporal problems with uncertainty.
In CP, 856–863.
Tsamardinos, I., and Pollack, M. E. 2003. Efficient solution tech-
niques for disjunctive temporal reasoning problems. Artificial In-
telligence 151:43–89.
Venable, K. B., and Yorke-Smith, N. 2005. Disjunctive temporal
planning with uncertainty. In IJCAI, 1721–1722.
Venable, K. B.; Volpato, M.; Peintner, B.; and Yorke-Smith, N.
2010. Weak and dynamic controllability of temporal problems with
disjunctions and uncertainty. In COPLAS workshop, 50–59.
Vidal, T., and Fargier, H. 1999. Handling contingency in temporal
constraint networks: from consistency to controllabilities. Experi-
mental and Theoretical Artificial Intelligence 11(1):23–45.


