
Robustness Envelopes for Temporal Plans

Michael Cashmore1, Alessandro Cimatti2, Daniele Magazzeni1, Andrea Micheli2, Parisa Zehtabi1
1King’s College London, United Kingdom

{michael.cashmore, daniele.magazzeni, parisa.zehtabi}@kcl.ac.uk,
2Fondazione Bruno Kessler, Italy
{cimatti, amicheli}@fbk.eu

Abstract

To achieve practical execution, planners must produce tem-
poral plans with some degree of run-time adaptability. Such
plans can be expressed as Simple Temporal Networks (STN),
that constrain the timing of action activations, and implicitly
represent the space of choices for the plan executor.
A first problem is to verify that all the executor choices al-
lowed by the STN plan will be successful, i.e. the plan is
valid. An even more important problem is to assess the effect
of discrepancies between the model used for planning and the
execution environment.
We propose an approach to compute the ”robustness enve-
lope” (i.e., alternative action durations or resource consump-
tion rates) of a given STN plan, for which the plan remains
valid. Plans can have boolean and numeric variables as well
as discrete and continuous change. We leverage Satisfiabil-
ity Modulo Theories (SMT) to make the approach formal and
practical.

1 Introduction
Planning is the problem of automatically synthesizing a
course of actions to achieve a desired goal. In many appli-
cations, time and continuous resources need to be modeled,
using languages such as PDDL2.1 (Fox and Long 2003). In
this setting, plans can be represented as Simple Temporal
Networks (STNs) (Dechter, Meiri, and Pearl 1991), so that
the specific timing of action execution is not constrained at
planning time (e.g. with a fixed schedule). This gives the ex-
ecutor the ability to choose such timings, but some runtime
reasoning is required to respect the plan constraints. A vast
literature is concerned with the efficient execution of STN
plans (e.g. (Muscettola, Morris, and Tsamardinos 1998)).

When employing STN plans, one first issue is to verify
that all executor choices allowed by the plan will be suc-
cessful, i.e. the plan is valid. An even more important issue
is to assess the effect of any discrepancy between the model
used for planning and the execution environment (e.g. a dif-
ference in the consumption rate of a resource). A valid plan
is guaranteed to be successful for any choice of the execu-
tor — but only under the assumption that the domain model
faithfully represents the actual execution environment. Un-
fortunately, this may not be the case.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we tackle both problems in a unified frame-
work. First, we propose techniques to formally validate
an STN plan and to synthesize its least restrictive validity
bounds in a PDDL2.1 setting. Existing works are limited
to the generation of valid-by-construction STN plans (e.g
(Frank and Jónsson 2003; Cesta et al. 2009)) or to their val-
idation for purely temporal timelines (Cesta et al. 2010).

Second, we propose an algorithm to formally synthesize
all the values of a set of parameters in the planning model
that preserve the validity of a given STN plan. This tells us
to which extent an STN plan is robust to discrepancies in the
values of such parameters between the formal model and the
execution environment.

Both of these problems aim at synthesizing a representa-
tion of all the variations either in the plan execution or in
the domain model that retain the formal validity of the plan
according to the planning language semantics. We call such
a representation the ”robustness envelope” of the plan.

We uniformly approach these problems by adopting the
framework of Satisfiability Modulo Theory (SMT): we en-
code all the possible execution traces of the STN plan as an
SMT formula. We use real-valued parameters to symboli-
cally represent the quantities subject to the synthesis in the
plan and in the problem, and we use quantifier elimination
techniques to synthesize a closed-form of the set of param-
eter values. The approach is made practical by the availabil-
ity of efficient SMT solvers, and can be applied to temporal
plans with discrete as well as continuous change.

The paper is structured as follows. In Section 2 we give
the needed SMT background. Section 3 formalizes the prob-
lems we tackle, while in Section 4 we describe the encod-
ing we use to solve them. Section 5 presents an under-
approximation technique aimed at simplify robustness en-
velopes. In Section 6 we discuss related work and Section 7
experimentally analyzes our techniques. Finally, in Section
8 we draw conclusions and discuss future work.

2 Logical Background
Given a first-order formula ψ in a background theory T the
satisfiability modulo theory (SMT) problem consists in de-
ciding whether there exists a model (i.e. an assignment to
the free variables in ψ) that satisfies ψ. For example, con-
sider the formula (x ≤ y) ∧ (x + 3 = z) ∨ (z ≥ y) in the

This is a pre-print version of the homonymous paper appearing in AAAI 2019.
Copyright (c) 2019 belongs to AAAI Press.

theory of real numbers (x, y, z ∈ R). The formula is satisfi-
able and a valid model is {x := 5, y := 6, z := 8}.

An SMT solver (Barrett et al. 2009) is a decision proce-
dure which solves the satisfiability problem for a formula
expressed in a decidable subset of first-order logic.

SMT solvers can support different theories. A widely
used theory is Linear Real Arithmetic (LRA). A formula
in LRA is an arbitrary Boolean combination, or universal
(∀) and existential (∃) quantification, of atoms in the form∑
i aixi ./ c where ./∈ {>,<,≥,≤, 6=,=}, every xi is a

real variable and every ai and c are real constants. We denote
with QF LRA the quantifier-free fragment.

In order to deal with quantifiers in LRA, many techniques
have been developed and implemented in SMT solvers. Sev-
eral techniques have been developed for removing quanti-
fiers from an LRA formula (Monniaux 2008): they trans-
form any LRA formula containing quantifiers into an equiv-
alent QF LRA formula. These techniques formally elimi-
nate variables from an LRA formula at a cost that is doubly
exponential in time and space in the original formula size,
and are extremely useful for synthesis tasks.

3 Formalization
We start by defining our planning language: we adopt the full
PDDL 2.1 (Fox and Long 2003) with continuous change.

Definition 1 A planning problem P is a tuple
〈P, V,A, I,G〉, where P is a set of propositions; V is
a set of real variables, called fluents; A is a set of durative
and instantaneous actions; I : P ∪ V → {>,⊥} ∪ R is the
total function describing the initial state of the predicates
and the fluents. G : P ∪ V → {>,⊥} ∪ R is a (possibly
partial) function indicating the goal condition. A durative
action a is a tuple 〈prea, eff a, dura〉, where prea is a set
of conditions for the actions partitioned in three subsets
pre`a, pre↔a and preaa of at-start, over-all and at-end
conditions; eff a is the set of action effects, partitioned in
seven sets: eff +

`a (positive starting effects), eff −`a (negative
starting effects), eff num

`a (numeric starting effects), eff +
aa

(positive ending effects), eff −aa (negative ending effects),
eff num
aa (numeric ending effects) and eff num

↔a (continuous
numeric effects); and dura is a set of duration constraints.
An instantaneous action a is a tuple 〈prea, eff a〉, where
prea is a set of pre-conditions and eff a is the set of action
effects, partitioned in eff +

a (positive effects), eff −a (negative
effects) and eff num

a (numeric effects).

In the usual PDDL 2.1 setting, a plan is defined as a set of
actions associated with a starting time and a duration. We
define this kind of plans as time-triggered plans.

Definition 2 A time-triggered plan π for a planning prob-
lem P .

= 〈P, V,A, I,G〉 is a set of tuples 〈t, a, d〉, with
t ∈ R≥0, a ∈ A and d ∈ R>0 iff a is a durative action.

For the sake of brevity, we omit the formal definition of
validity for such a plan, which can be found in (Fox and
Long 2003). Here, it suffices to remind oneself that a plan
is valid if by simulating the system controlled by the plan,
all the prescribed actions are applicable (all their conditions

are satisfied at the time the action is executed) and the goal
is reached after the last action terminates.

We define an STN plan as a constraint network of time
points indicating the starting or the ending of actions. Note
that the STN plan contains all the information of, and is
strictly more general than a time-triggered plan. Moreover,
that it is not necessary to first find a time-triggered plan in
order to generate an STN plan.

Definition 3 An STN plan π for P .
= 〈P, V,A, I,G〉

is a tuple 〈T,C〉, where T is the set of time points
{z} ∪ {tsda, teda | da is a durative action instance} ∪ {ta |
a is an instantaneous action instance} andC is a set of con-
straints in the form ti − tj ≤ b with ti, tj ∈ T , and b ∈ R.

Finally, we can define the validity of an STN plan by con-
sidering the set of all possible time-triggered plans that are
compatible with the STN specification. If all such plans are
valid, we say that the STN plan is valid.

Definition 4 Given an STN plan π
.
= 〈T,C〉 and an as-

signment µ : T → R s.t. µ(z) = 0, the induced time-
triggered plan by µ is the time-triggered plan tt(µ)

.
=

{〈µ(tsda), da, µ(teda) − µ(tsda)〉 | da is a durative action} ∪
{〈µ(ta), a, 0〉 | a is an instantaneous action}.
Definition 5 An STN plan π .

= 〈T,C〉 for P is valid if for
each assignment µ : T → R s.t. µ(z) = 0 and for all ti −
tj ≤ b ∈ C µ(ti)−µ(tj) ≤ b, the time-triggered plan tt(µ)
is valid for P .

The first problem we consider is checking the validity of an
STN plan: we call this problem STN Plan Validation.

Running example. Consider for example an exploration
robot, initially in location S, that is tasked to collect some
data from location D and then reach location T to transmit
the data to a control station. The robot is equipped with
a battery that is initially 100% full. Suppose that the
robot can reach location D in a minimum of 60 minutes
at full speed and must be there before 100 minutes to
get the data. Moreover, the time needed for the journey
from D to T takes a minimum of 120 minutes and the
robot must transmit the data no later than 200 minutes
after getting the data. For this example, we assume that
the moving durations between locations are independent
one another and that the battery is drained at a constant
rate of 0.4% per minute of traveling (in a more realistic
model the battery draining model would be much more
complex and also data acquisition and transmission would
require energy and time: we disregard these details for
the sake of simplicity). A time-triggered plan to achieve
the objective in this example problem is the following: πtt

.
=

{〈0, “go from S to D”, 60〉, 〈60.1, “go from D to T ”, 120〉}.
This plan is valid: one can simulate the plan in the formal
model reaching the goal without completely draining the
battery (in fact, at the end of the plan, the battery would
be still 28% full) and respecting all time requirements.
The plan is also optimal with respect to the make-span
(assuming a PDDL 2.1 ε-separation of 0.1 time units): it
achieves the goal in the minimum possible time. A possible
STN plan for this problem, instead, is πSTN depicted in
Figure 1. Also this plan is valid, because every execution

z tsSD teSD tsDT teDT
[0, 0] [60, 80] [0, 0] [120, 150]

Figure 1: The πSTN example STN plan: nodes are time
points and edges are temporal constraints. A label [l, u] of an
edge from x to y indicates the constraint y−x ≤ u∧x−y ≤
−l. The STN plan reads as follows: go from S to D (labeled
as SD) at time 0 and arrive there not before 60 minutes
and no later that 80 minutes, then immediately drive to T
(labeled as DT) arriving no earlier than 120 minutes after
leaving D and no later than 150 minutes after leaving D.

z tsSD teSD

tsDTteDT

[0, 0] [γSD, γSD]

[0, 0]

[γDT , γDT]

γSD

γDT

100

60

120 150 190

Figure 2: (Left) A parametrization of πSTN . (Right) The ro-
bustness envelope for the parametrized πSTN : any parame-
ter assignment within the gray-filled envelope yields a valid
plan. The two dashed rectangles show two possible parame-
ter decouplings of this envelope (described in Section 5).

that satisfies the plan constraints will achieve the goal
without draining the battery. We highlight that this example
STN plan is totally-ordered for the sake of simplicity, but
all our techniques can deal with any STN as per Def 3.

Synthesis of robustness envelopes. One important re-
search question concerning STN plans is how to characterize
the situations in which the plan is guaranteed to work. On
the same line, checking whether a given STN plan is max-
imally “flexible” or if we can relax the constraint bounds
while keeping the STN structure to allow the plan to work
in more diverse situations, is also crucial.

Ideally, one may want to synthesize the weakest possi-
ble bounds in the STN constraints that still guarantee the
STN plan validity for the given planning problem. To this
end, we propose to introduce real-valued symbolic parame-
ters in the formulation of an STN plan and a technique that
is able to synthesize all the possible values for such parame-
ters that keep the plan valid. Consider again the πSTN plan
and suppose that we are interested in maximizing the possi-
ble durations of the two moving actions. We introduce two
parameters γSD and γDT in the plan, and use them to con-
strain the duration of the movement from S to D and from
D to T , respectively. Given this parametrization of the plan,
the problem we are after consists in finding all the values for
the two parameters such that an STN plan instantiated with
these values is valid. The parametrized STN plan and the ro-
bustness envelope resulting from the synthesis are shown in
Figure 2. With this parametrization idea, we can synthesize
the robustness envelope of an STN plan by creating a fresh
parameter for some (possibly all) edges of interest. The case
in Figure 2 is an example of this parametrization: the tem-
poral distance between the two moving actions is fixed to 0
while we parametrized the duration of the two plan actions.

0.3

60

0.35

65

0.4

12070

0.45

130

ra
te

75

0.5

140

SD

80

0.55

150

DT

16085

0.6

17090
18095 190

100 200

Figure 3: A 3D visualization of the robustness envelope for
the example problem.

We further extend and generalize this idea by allowing
parameters to occur also in the planning problem specifica-
tion: in fact, the same approaches will be used to synthesize a
robustness envelope for problem parameters, formally char-
acterizing all the possible parameter values in the problem
definition for which a given plan (that could be manually or
automatically generated) is guaranteed to work. This prob-
lem is extremely important to evaluate plans before putting
them in operation, allowing a formal analysis of the situa-
tions for which the plan is “robust”.

Consider again our running example, if we add a param-
eter γrate indicating the rate of battery consumption per
minute (in the original formulation γrate was fixed to 0.4),
we could synthesize all the draining rates for which πSTN is
valid. The robustness envelope in this case is γrate ∈ [0, 10

23],
so we are sure that even if the battery were drained faster
than expected, the plan execution would still succeed.

Finally, we can combine these two ideas by synthesizing
at the same time parameters for the plan and the planning
problem so that we obtain a robustness envelope indicating
a class of planning problems for which an STN plan exists.

In our example, if we consider the set of parameters
γrate, γSD and γDT at the same time, we obtain the enve-
lope depicted in Figure 3. Note that the robustness envelope
shown in Figure 2 is just a projection of this envelope for
γrate = 0.4.

In order to uniformly formalize the robust envelope syn-
thesis problem, we only need to introduce a planning model
comprising parameters in either the problem or the plan
specifications.

Definition 6 A parametrized planning problem PΓ is a tu-
ple 〈Γ,P〉, where Γ is a finite set of real-valued parameters
{γ1, · · · , γn} and P is a planning problem in which condi-
tions, effects, goals and initial states can contain parame-
ters.

Intuitively, we are introducing a set of symbols Γ that can
be used in expressions where real-typed constants are usu-
ally allowed. In this way, the user can define the quantities
that are of interest for the synthesis. We also allow the use
of parameters in the plan specification by generalizing the
definition of STN plans.

Definition 7 A parametrized STN plan πΓ for a
parametrized planning problem PΓ

.
= 〈Γ,P〉 is a tu-

ple 〈T,C,CΓ〉, where 〈T,C〉 is an STN plan for P and CΓ

is a set of constraints in the form ti − tj ≤ γi with ti ∈ T ,

tj ∈ T , and γi ∈ Γ.
For our purposes, we are interested in finding values (i.e.

assignments) to the parameters that when substituted in the
problem and the plan specifications yield a valid plan as per
Definition 5.
Definition 8 Given a parametrized planning problem PΓ,
a parametrized STN plan πΓ for PΓ and an assignment
µ : Γ → R of real values to all the parameters in Γ, we de-
fine the parameter-assigned planning problem PΓ(µ) and
the parameter-assigned STN plan πΓ(µ) as the planning
problem and plan where any parameter γi is substituted with
its assigned value µ(γi).

At this point, we can formally define the objective of our
synthesis: the envelope of all the valid assignments to pa-
rameters that make a parametrized STN plan valid.
Definition 9 Given a parametrized STN plan πΓ for a
parametrized planning problem PΓ, the robustness enve-
lope is a relation Λ ⊆ RN where N .

= |Γ|, such that for
all the assignments µ : Γ → R in which µ(γi) = vi with
〈v1, · · · , vN 〉 ∈ Λ, πΓ(µ) is a valid plan for PΓ(µ).

4 Encoding in SMT
We can now present our encoding in the SMT framework:
we will use the same encoding in different ways to tackle
all the problems discussed in the previous section. The basic
idea is to encode all the time-triggered plan executions in the
planning problem as an SMT formula.

We start by considering a planning problem P .
=

〈P, V,A, I,G〉 without parameters and an STN plan π
.
=

〈T,C〉. In the following, let Tz be the set T \ {z} and let H
be the cardinality of Tz . In order to encode the execution of
P controlled by π, we need to model H “time points”, each
corresponding to the starting or ending of an action (or to
a timed-initial-literal1). This is somehow similar to a SAT-
Plan (Kautz and Selman 1992) encoding, but here we have
no need to increase the bound since the plan π fixes the exact
length. The variables used in the encoding (indicated with
Varπ) are listed below.
• pi with Boolean type, for each p ∈ P and each i ∈ [1, H];
• fi with Real type, for each f ∈ V and each i ∈ [1, H];
• ti with Real type, for each i ∈ [1, H];
• post with Real type, for each t ∈ Tz;
• valt with Real type, for each t ∈ Tz;
In addition, we define the expressions (not variables) p0

.
=

I(p) for each p ∈ P , f0
.
= I(f) for each f ∈ V , t0

.
= 0,

posz
.
= 0 and valz

.
= 0.

We subdivide our encoding in three SMT expressions: in-
dicated as encπtn, encπeff and encπproofs . The formula encπtn
encodes the temporal constraints imposed by π limiting the
possible orderings of time points. The formula encπeff en-
codes the effects of each time point on the variables fi,

1For the sake of brevity, we did not formally include timed-
initial-literals (TILs) in our formulation. However, these can be
handled as instantaneous actions having the TIL as an effect that
are artificially added to the STN plan and constrained to happen at
the TIL time. With our technique it is therefore possible to synthe-
size the set of possible timings for a TIL that make a plan valid.

while encπproofs encodes the validity properties of the plan,
namely that the conditions of each executed action are satis-
fied, that the goal is reached, and that the ε-separation con-
straint imposed by PDDL 2.1 is respected. We are designing
our encoding in such a way that π is a valid plan for P if
encπtn∧encπeff is satisfiable and encπtn∧encπeff → encπproofs

is a valid formula. The first check ensures that the formula is
not-trivially-unrealizable due to inconsistencies in the STN,
while the second validates the plan, checking that each exe-
cution allowed by the plan is valid and reaches the goal.

The formula encπtn encodes the temporal network and its
constraints, it is defined as the conjunction of the following
constraints.
• valt ≥ 0 for each t ∈ Tz;
•

∨H
i=1 post = i for each t ∈ Tz;

•
∧H
i=1(post = i→ ti = valt) for each t ∈ Tz;

•
∧
o∈Tz,o 6=t(valt > valo → post > poso) for each t ∈ Tz;

•
∧
o∈Tz,o 6=t poso 6= post for each t ∈ Tz;

• valti − valtj ≤ b for each ti − tj ≤ b ∈ C.
The formula encπeff encodes the effects at each time point:

encπeff
.
=

∧
t∈Tz

∧H
i=1(post = i → η(t, i)), where η(t, i)

encodes the effects of time point t at step i. η(t, i) is the
conjunction of the following constraints:
• pi if p ∈ eff add; ¬(pi) if p ∈ eff del;
• fi = x with f := x ∈ eff num ;
• fi = fi−1 + ι(f, i) + x with f+= x ∈ eff num ;
• fi = fi−1 + ι(f, i)− x with f−= x ∈ eff num ;
• pi = pi−1 for p ∈ P if p 6∈ eff add ∪ eff del;
• fi = fi−1 + ι(f, i) for each f ∈ V if f 6∈ eff num .
The sets of effects eff add, eff del, eff num depend on the kind
of action associated with the time point t. If t = ta being
a an instantaneous action, eff add = eff +

a , eff del = eff −a ,
eff num = eff num

a ; if t = tsda being da a durative action,
eff add = eff +

`da, eff del = eff −`da, eff num = eff num
`da ; oth-

erwise, if t = teda being da a durative action, eff add =

eff +
ada, eff del = eff −aad, eff num = eff num

ada . The term ι(f, i)
encodes the increment of value for fluent f between steps
i − 1 and i due to continuous change and it is defined as∑
da∈A((postsda < i∧posteda ≥ i)?eff num

↔da|f (ti−valtsda)−
eff num
↔da|f (ti−1 − valtsda) : 0)2, where eff num

↔da|f (x) indicates
the continuous effect of durative action da for fluent f where
the time parameter (#t) is substituted with x.

Finally, the formula encπproofs constituting the right-hand
side of the encoding captures the proof-obligations for the
plan. We indicate the trivial translation of a PDDL ex-
pression e into an SMT formula using variables at time i
as JeKi: for example, a PDDL expression (and (p) (=
(f) 5)) is translated as pi ∧ fi = 5.0. encπproofs is the
conjunction of the following formulae.
• Goal is achieved:

∧
g∈GJgKH .

• Durative action conditions are satisfied. For each durative
action da:
–

∧H
i=1 postsda = i→

∧
cpre`da

JcKi;

2The syntax φ ? term1 : term2 indicates the if-then-else
term (Kim, Somenzi, and Jin 2009). The semantics is analogous
to the if-then-else expression available in programming languages.

–
∧H
i=1 posteda = i→

∧
c∈preada

JcKi;
–
∧H
i=1(posteda > i ∧ postsda ≤ i)→

∧
c∈pre↔da

JcKi.
• Instantaneous action conditions are satisfied:∧H

i=1 posta = i →
∧
c∈preaJcKi if a is an instanta-

neous action.
• Duration conditions are respected: teda − tsda ./ b for each

durative action da and for each constraint duration ./
b ∈ durda.

• Over-all invariants are respected:
∧H
i=1(posteda > i ∧

postsda ≤ i) → ∀t̂.0 < t̂ < (ti+1 − ti) → CC(da, i)
if da is a durative action.

• ε-separation: valx−valy >= ε∨valx−valy <= −ε for
each pair of interfering time points 〈x, y〉.

The formula CC(da, i) where da is a durative action is de-
fined as

∧
c∈pre↔da

JcKi[fi → φ(f, i) | f ∈ V], where
φ(f, i) is

∑
da∈A((postsda ≤ i∧posteda > i)?(eff num

↔da|f (t̂+

ti − valtsda)− eff num
↔da|f (ti − valtsda)) : 0).

Theorem 1 Given a planning problem P and an STN plan
π for P , π is valid if and only if encπtn ∧ encπeff is satisfiable
and encπtn ∧ encπeff → encπproofs valid.

At this point, we can exploit the same encoding to address
the other three synthesis problems. We can symbolically
express the parameter envelope by adding one real-valued
SMT variable for each parameter and using them in our en-
coding in place of the constant values used for validation.
Formally, we indicate with encπΓ

tn , encπΓ

eff and encπΓ

proofs the
SMT formulae obtained by applying the encoding described
above to a parametrized planning problem and plan. The re-
sulting formulae are defined on the same set of variables of
the validation encoding with the addition of the real-typed
variables Γ̄

.
= {pari | γi ∈ Γ}. Whenever in an expression

or effect we encounter a parameter γi, we encode it using the
SMT variable pari. In this way, we are left with a formula
defined over the variables Varπ ∪ Γ̄. So, by using appropri-
ate quantifications, we can express (and compute via quan-
tifier elimination) the assignments to parameters that make
the plan valid. In particular, we can compute the robustness
envelope as the formula ρ(Γ̄) defined as:
∃X̄.(encπΓ

tn ∧enc
πΓ

eff)∧∀X̄.((encπΓ
tn ∧enc

πΓ

eff)→ encπΓ

proofs).

The models of ρ(Γ̄) are all and only the parameter values
that make the plan valid for the problem. This formulation
reflects the plan validity check described above. The exis-
tential check ensures that we limit ourselves to parameter as-
signments that do not trivially violate the consistency of the
execution by making the STN unsatisfiable or that make two
effects clash at the same time. The universal check, ensures
that under any possible execution of the system, the goals,
action conditions, resource constraints and ε-separation con-
straints are satisfied. We can use quantifier-elimination tech-
niques to compute a closed-form formulation of ρ(Γ̄). The
resulting formula is effectively a specification of the robust-
ness envelope as per Def 9: each model corresponds to an
element of Λ.

5 Parameter Decoupling
A parameter envelope can be an arbitrary set of points in
the space of the possible parameter values. This makes it
difficult to represent it compactly and also to reason effi-
ciently on the parameter values. In particular, if we want to
use it during the execution of the plan to grant the maxi-
mum freedom of choice, we need an executor that is able to
reason on such a representation and to extrapolate the pos-
sible values for a particular quantity being controlled. For
this reason it might be convenient to give up some of the
valid parameter values in the plan to obtain a simpler enve-
lope that makes reasoning easier. Naturally, in this case we
need to under-approximate the envelope because we want
to retain the guarantee that any assignment we choose from
such an envelope yields a valid plan execution. We propose
an under-approximation strategy that reduces the (possibly
very complex) parameter envelope to a set of closed inter-
vals over the real numbers, one for each parameter, with the
guarantee that by picking any parameter assignment where
each parameter value is chosen form the corresponding in-
terval, we get an assignment yielding a valid plan. We call
such a simplified envelope “decoupled” because the range
of values of each parameter becomes independent of all the
others.
Definition 10 A decoupled robustness envelope for a
parametrized STN plan πΓ for PΓ is a function θ : Γ →
R×R such that for all the assignments µ : Γ→ R in which
µ(γi) ∈ [l, h] with 〈l, h〉 .= θ(γi), πΓ(µ) is valid for PΓ(µ).

We can compute a decoupled robustness envelope from
the formula ρ(Γ̄) as follows. First, we define two sets of
lower-bound LB

.
= {lbi | γi ∈ Γ} and upper-bound

UB
.
= {ubi | γi ∈ Γ} real-valued SMT variables.

Then, we encode all the possible decoupled robust-
ness envelopes as the formula RE(LB,UB) defined as:
(
∧
γi∈Γ lbi≤ubi) ∧ ∀Γ̄.((

∧
γi∈Γ lbi≤pari≤ubi)→ ρ(Γ̄)).

Any model µ of RE(LB,UB) corresponds to a decou-
pled robustness envelope θ that assigns to each γi the pair
of real numbers 〈µ(lbi), µ(ubi)〉. In this space, we are inter-
ested in fixing one specific decoupled robustness envelope
that maximizes some user-defined criterion. In fact, there is
no single criterion that yields an absolutely best decoupled
robustness envelope. See for example the two decouplings
highlighted in green and purple in Figure 2: both are maxi-
mal in the sense that we cannot add possible values to one
parameter without losing some valid values for another, and
are thus incomparable. An example of a possible objective
for this maximization is the sum of the length of the intervals
for each parameter. This can be formulated as the following
optimization problem on the formula RE(LB,UB).
maximize

∑
γi∈Γ(ubi − lbi) s.t. RE(LB,UB)

In the running example, the result of this maximization
would be the region highlighted in green in Figure 2: γSD ∈
[60, 100] and γDT ∈ [120, 150], yielding a total sum of 70
minutes. In other cases, we might be interested in widening
as much as possible the intervals of some parameters sacri-
ficing those of some of the others, therefore, we can weight
the sum to be maximized. For example, if we are only in-
terested in widening the interval for γDT , we can compute

the decoupled envelope γSD = 60 and γDT ∈ [120, 190].
These optimization problems can be practically and effi-
ciently solved using the Optimization Modulo Theories (Se-
bastiani and Tomasi 2015) framework.

6 Related Work
In this paper we make two contributions. First we deal with
the validation of STN plans and the computation of their
robustness envelopes. Our synthesis approach supports pa-
rameters in both the plan and the problem. This second case
is completely new for the planning literature: to the best of
our knowledge no other approach is able to formally com-
pute the space of domain variations (in terms of parameters
values) that guarantee plan validity. Instead, broadening the
applicability of plans to handle the run-time contingencies is
not a new idea, but this paper addresses this issue for a very
expressive language (we support the full PDDL 2.1 language
with continuous change) and from a formal standpoint.

Plan “flexibility”, robustness and their implications in ex-
ecutability of plans have been studied in the context of
constraint-based planning and scheduling. The concept of
“envelope” has been introduced in (Muscettola 2002), where
the author deals with the scheduling of a temporal network
with piecewise-constant resources. This work has been ex-
tended in (Frank and Morris 2007) to deal with continu-
ous linear resources. Both these works focus on synthesiz-
ing a flexible execution given a temporal network subject to
constraints on continuous resources. This paper generalizes
these ideas allowing to directly reason on the planning do-
main instead of a generated temporal network. Essentially,
we keep into account the planning model for which the STN
is a plan in addition to the scheduling constraints. Moreover,
these works are limited to purely-temporal flexibility: their
focus is on finding when to start and terminate actions in
order to respect the resources; here instead we can also rea-
son on the resources themselves by synthesizing the possi-
ble initial values or the consumption rates that guarantee the
successful execution of a plan.

Policella et al. (2004) propose a technique that is simi-
lar in spirit to ours: we both want to generalize the appli-
cability of a given STN plan. However, our synthesis con-
siders the planning problem for which the STN encodes a
plan, yielding an extremely non-convex problem due to the
presence of predicates and fluents that interfere in the timing
decisions. Essentially we are considering all the possible re-
orderings (Bäckström 1998) of a plan instead of the partial
orders considered by Policella et al..

Similarly, Do and Kambhampati (2003) derive “order-
constrained” plans from time-triggered temporal plans.
Order-constrained plans are a sub-case of STN plans in
which only non-metric precedence constraints are allowed
between the end of an action and the start of another. The
goal of Do and Kambhampati is to allow the reordering
of actions during execution, hence augmenting the possible
plan executions. In our paper, we focus on widening the tem-
poral applicability for metric (non only order-constrained)
STNs: we do not change the causal links in the STN plan,
but we allow to reason on continuous resources and com-
plex temporal constraints.

Concerning the validation of STN plans, Cesta et al.
(2010) propose a reduction from these plans to timed au-
tomata model-checking. Here, we encode the STN validity
by exploiting the expressiveness of the SMT framework that
we then use for our synthesis objectives. Our encoding is
conceptually similar to a Bounded Model Checking (Biere
et al. 2003), but differently from Cesta et al. we consider
continuous resources and exploit the length and structure of
the plan, avoiding the need for full-blown model-checking.

In timeline-based planning, it is customary to generate
plans in the form of STNs. Planners such as IxTeT (Ghal-
lab and Laruelle 1994), EUROPA (Frank and Jónsson
2003) or APSI (Cesta et al. 2009) can produce correct-by-
construction STN plans. PLATINUM (Umbrico et al. 2018)
propose a framework for planning with resources able to
generate flexible plans. In this work, we do not focus on
the issue of plan generation: we want to perform the syn-
thesis of a robustness envelope (for both time and resources)
a-posteriori. (Mayer, Orlandini, and Umbrico 2016) and (Gi-
gante et al. 2017) formalize the validity of flexible plans for
timeline planning models; here we address action-based lan-
guages, proposing a synthesis technique for computing ro-
bustness envelopes for both plan and problem parameters.

Nilsson et al. (Nilsson, Kvarnström, and Doherty 2018)
consider temporal uncertainty in their planning model syn-
thesizing plans that are guaranteed to achieve the goal un-
der any possible modeled contingency. We aim at a sim-
ilar goal taking a radically different path: starting from a
plan that is valid for a specific contingent choice, we syn-
thesize the space of contingencies for which it is guaranteed
to work. Moreover, we consider the parametrization of the
domain that corresponds to synthesizing the contingent re-
source variations that keep the plan execution valid.

Fox, Howey, and Long deal with the problem of measur-
ing the robustness of plans by statistically computing the
maximum disturbance in the timing of activities that main-
tain the plan valid with a certain probability (Fox, Howey,
and Long 2006). The work in (Fritz and McIlraith 2009)
elaborates on the same idea, proposing a method to compute
the robustness analytically via regression for purely sequen-
tial plans; moreover, a technique to generate plans maximiz-
ing the robustness is presented. In this paper, we are able to
do the same kind of reasoning and beyond: we are not lim-
ited to disturbances in the duration of actions and we con-
sider a wider class of plans (STN plans instead of PDDL
timed plans). In addition, our reasoning is exact instead of
statistical. Finally, our technique allows the generation of the
robustness envelope keeping the plan formally valid, so we
do not produce a simple measure of the plan like the maxi-
mal disturbance, but we can analyze the inter-dependencies
of the actions composing the plan.

7 Experiments
In this section, we present an experimental evaluation aimed
at showing the immediate applicability of the technique: we
prove that the validation of STN plans is effectively applica-
ble to various domains taking very reasonable computational
resources, and that the robustness envelope synthesis prob-
lem, while not scaling to huge plan and domains yet, can be

solved by directly employing existing solvers and tools and
shows promising results.

All the techniques presented in the paper have been im-
plemented in a tool that takes as input a PDDL2.1 problem
and domain together with an STN plan. The tool is imple-
mented in Python, and uses the PySMT library (Gario and
Micheli 2015) for SMT solving and quantification. We use
the ”Virtual Substitution” (Loos and Weispfenning 1993)
quantifier elimination technique for LRA provided by the
MATHSAT5 (Cimatti et al. 2013) SMT solver to perform the
synthesis, and the Z3 (de Moura and Bjørner 2008) solver
to perform the validation of STN plans and to solve the op-
timization problem arising from parameter decoupling. Cur-
rently, the tool is limited to LRA formulae, and is thus un-
able to handle problems in which parameters are multiplied
with non-constants. This is not a limitation of the technique
itself, but a technical limitation of the tool due to the library
being used. The implementation of the tool and all bench-
marks are available online3.

STN Plan Validation. As a case-study, we used three do-
mains: Autonomous Underwater Vehicle (AUV) (Buksz et
al. 2018), the Solar Rover (Piotrowski et al. 2016), and the
linear generator from the PDDL+ benchmarks (Cashmore et
al. 2016). Using these domains, we created several problem
instances. We varied the size of problem for each domain
by varying the number of missions in the AUV domain, the
number of required batteries in the Solar Rover domain, and
the number of required required refuel actions in the linear
generator domain. The total benchmark set consists of 58
problem instances of varying size.
We generated time-triggered plans for each problem in-
stance using the planner SMTPLAN (Cashmore et al. 2016)
for the linear generator and POPF (Coles et al. 2010) for the
others. STN plans were then generated by relaxing the dura-
tion of each action in the time-triggered plan. For each plan,
10 STNs were generated, allowing the duration d of each ac-
tion to lie between (d− d ∗ 0.01 ∗ v) and (d+ d ∗ 0.01 ∗ v)
for v = 0 · · · 9. This resulted in 580 STNs, with a duration
variation up to 18% of the action duration specified in the
original domain model. These STN plans are not necessar-
ily valid for the original domain, unless v = 0, in which case
the STN represents the original time-triggered plan.
To examine the efficiency of our SMT encoding for STN
plan validation, we validated all the STN plans against the
problem using our tool. The run-time for validating each
STN plan and the validation results are shown in Figure 4.
The plot shows that validation time gracefully increases with
the size of the problem, and length of the plan. Also, we
note that proving invalidity does not take noticeably differ-
ent time than proving validity.

Robustness Envelope Synthesis. For the synthesis prob-
lem, we parametrized each domain by expressing constants
as problem parameters: the time needed for a full recharge
and the speed of the navigation actions in the AUV domain,
the required charge for communication in the Solar Rover,
and refuel rate in the linear generator domain. In addition,
we parametrized the duration of increasing numbers of ac-

3
http://es.fbk.eu/people/amicheli/resources/aaai2019

1 2 3 4 5 6 7 8 9 10

Problem

0.5

1.0

2.0

5.0

10.0

25.0

50.0

100.0
150.0
200.0

Va
lid

at
io

n
Ti

m
e

AUV Valid
AUV Not Valid
Generator Valid
Generator Not Valid
Rover Valid
Rover Not Valid

Figure 4: Times to validate plans.

Problem 1 2 3 4 5 6
AUV 9.8 16.4 25.6 21.7 33.9 60
Generator 0.31 0.28 0.46 1.12 23.1 Time Out
Solar Rover 0.75 1.03 1.39 1.64 2.25 3.45

Table 1: Times (sec) taken to synthesis robustness envelopes
for increasing problem sizes.

tions in the STN plans. We applied our encoding to synthe-
size the robustness envelope for all the domains and plans;
we also computed the decoupled robustness envelope (using
the the sum of the size of the intervals for each parameter
as objective function). Tables 1 and 2 show the run-time for
computing the decoupled envelopes as the size of the prob-
lem and the number of parameters increase, respectively.
First we report that the decoupling phase took negligible
time in all the cases: all the time is consumed in the quan-
tifier elimination needed to synthesize the robustness enve-
lope. The tables show that the length of the plan has a strong
impact on the runtime, while the number of parameters is
less detrimental. This is due to the ”BMC nature” of our en-

Problem 1 2 3 4 5 6
AUV #1 1.7 0.78 0.97 3.14 51.15 TO
AUV #2 2.92 1.05 1.32 7.41 94.84 TO
AUV #3 5.1 1.2 1.82 9.87 107.17 TO
AUV #4 7.06 1.2 2.04 16.36 89.1 TO
Gen #1 11.14 59.91 542.3 6350.3 TO TO
Gen #2 14.13 72.76 615.22 TO TO TO
Gen #3 375.4 422.55 1130.43 TO TO TO
Gen #4 TO TO TO TO TO TO

Rover #1 1.59 2.32 3.83 5.55 5.28 8.47
Rover #2 2.69 4.52 5.14 5.62 8.32 13.02
Rover #3 6.49 6.67 9.07 7.98 11.55 19.7
Rover #4 8.0 32.72 22.16 12.52 67.6 29.55

Table 2: Times (sec) taken to synthesize robustness en-
velopes for increasing numbers of parameters, in problems
of increasing complexity. For each domain, #X means X pa-
rameters are considered, TO means time out after 30 mins.

coding that keeps a copy of each variable for each step of
the plan, making the formula significantly larger for longer
plans, similar behaviors are observed also in SAT/SMT-
based planners. The number of parameters is also a source of
complexity, but by pushing the quantification and exploiting
the simplifications offered by the SMT solvers we can scale
gracefully. Interestingly, the behavior of the ”Rover #4” in-
stance shows that there is no direct correlation between num-
ber of parameters and the solving times in all the cases: if the
robustness envelope turns out to be simpler or the search in-
side the quantifier elimination algorithm quickly finds good
models, synthesizing regions in for a higher number of di-
mensions could take lees time.

8 Conclusion and Future Work
This paper addresses two important problems concerning
STN plans in planning domains with durative actions and
continuous change. First, we propose a formal approach to
check the validity of a given STN plan and to compute its
robustness envelope. Second, we generalize this approach to
computing the robustness envelope for a planning problem
for which a (possibly parametric) STN plan remains valid.

In this framework, all the plan executions are analyzed
not only with respect to the domain used at planning time,
but also with respect to variants of the domain. This allows
a formal impact analysis of variations in the domain (e.g.
resource consumptions, action durations). The approach ex-
ploits the expressiveness of the SMT framework, and is
made practical by the effectiveness of SMT solvers.

This paper is a first step towards the adoption of formal
techniques to generalize and study the applicability of plans
and to analyze the planning problem specifications. In the
future, we will investigate how to adapt SMT-based tech-
niques to increase the scalability and to support more ex-
pressive (e.g. non-linear) dynamics. Finally, we plan to study
the theoretical connections between our techniques and the
works in non-deterministic temporal planning, such as those
concerning temporal controllability.

References
Bäckström, C. 1998. Computational aspects of reordering plans.
Journal of Artificial Intelligence Research 9:99–137.
Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C. 2009.
Satisfiability modulo theories. In Handbook of Satisfiability. IOS
Press. 825–885.
Biere, A.; Cimatti, A.; Clarke, E. M.; Strichman, O.; and Zhu, Y.
2003. Bounded model checking. Advances in Computers 58:117–
148.
Buksz, D.; Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; and
Ridder, B. 2018. Strategic-tactical planning for autonomous un-
derwater vehicles over long horizons. In IROS.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016. A
compilation of the full PDDL+ language into SMT. In ICAPS.
Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; and Rasconi, R.
2009. The APSI Framework: a Planning and Scheduling Software
Development Environment. In ICAPS (Application Showcase).
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci, E. 2010.
Validation and verification issues in a timeline-based planning sys-
tem. Knowledge Engineering Review 25(3):299–318.

Cimatti, A.; Griggio, A.; Schaafsma, B. J.; and Sebastiani, R. 2013.
The MathSAT5 SMT solver. In TACAS, 93–107.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In ICAPS, 42–49.
de Moura, L., and Bjørner, N. 2008. Z3: An efficient SMT solver.
In TACAS, 337–340.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49(1-3):61–95.
Do, M. B., and Kambhampati, S. 2003. Improving temporal flex-
ibility of position constrained metric temporal plans. In ICAPS,
42–51.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to PDDL
for Expressing Temporal Planning Domains. Journal of Artificial
Intelligence Research 20:61–124.
Fox, M.; Howey, R.; and Long, D. 2006. Exploration of the robust-
ness of plans. In AAAI, 834–839.
Frank, J., and Jónsson, A. 2003. Constraint-based Attribute and
Interval Planning. Constraints 8(4):339–364.
Frank, J., and Morris, P. H. 2007. Bounding the resource availabil-
ity of activities with linear resource impact. In ICAPS, 136–143.
Fritz, C., and McIlraith, S. A. 2009. Computing robust plans in
continuous domains. In ICAPS.
Gario, M., and Micheli, A. 2015. pySMT: a solver-agnostic li-
brary for fast prototyping of SMT-based algorithms. In SAT - SMT
Workshop.
Ghallab, M., and Laruelle, H. 1994. Representation and control in
IxTeT, a temporal planner. In AIPS, 61–67.
Gigante, N.; Montanari, A.; Mayer, M. C.; and Orlandini, A. 2017.
Complexity of timeline-based planning. In ICAPS, 116–124.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiability. In
ECAI, 359–363.
Kim, H.; Somenzi, F.; and Jin, H. 2009. Efficient Term-ITE con-
version for satisfiability modulo theories. In SAT, 195–208.
Loos, R., and Weispfenning, V. 1993. Applying linear quantifier
elimination. Computer Journal 36(5):450–462.
Mayer, M. C.; Orlandini, A.; and Umbrico, A. 2016. Planning and
execution with flexible timelines: a formal account. Acta Informat-
ica 53(6-8):649–680.
Monniaux, D. 2008. A quantifier elimination algorithm for linear
real arithmetic. In LPAR, 243–257.
Muscettola, N.; Morris, P. H.; and Tsamardinos, I. 1998. Reformu-
lating temporal plans for efficient execution. In KR, 444–452.
Muscettola, N. 2002. Computing the envelope for stepwise-
constant resource allocations. In CP, 139–154.
Nilsson, M.; Kvarnström, J.; and Doherty, P. 2018. Planning with
temporal uncertainty, resources and non-linear control parameters.
In ICAPS, 180–189.
Piotrowski, W. M.; Fox, M.; Long, D.; Magazzeni, D.; and Merco-
rio, F. 2016. Heuristic planning for PDDL+ domains. In IJCAI,
3213–3219.
Policella, N.; Smith, S. F.; Cesta, A.; and Oddi, A. 2004. Gen-
erating robust schedules through temporal flexibility. In ICAPS,
209–218.
Sebastiani, R., and Tomasi, S. 2015. Optimization modulo theories
with linear rational costs. ACM Transactions on Computational
Logic 16(2):12:1–12:43.
Umbrico, A.; Cesta, A.; Mayer, M. C.; and Orlandini, A. 2018.
Integrating resource management and timeline-based planning. In
ICAPS, 264–272.

