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Abstract—SystemC is becoming a de-facto standard for the de-
velopment of embedded systems. Verification of SystemC designs
is critical since it can prevent error propagation down to the
hardware. SystemC allows for very efficient simulations before
synthesizing the RTL description, but formal verification is still
at a preliminary stage. Recent works translate SystemC into the
input language of finite-state model checkers, but they abstract
away relevant semantic aspects, and show limited scalability.

In this paper, we approach formal verification of SystemC by
reduction to software model checking. We explore two directions.
First, we rely on a translation from SystemC to a sequential C
program, that contains both the mapping of the SystemC threads
in form of C functions, and the coding of relevant semantic aspects
(e.g. of the SystemC kernel). In terms of verification, this enables
the “off-the-shelf” use of model checking techniques for sequential
software, such as lazy abstraction.

Second, we propose an approach that exploits the intrinsic
structure of SystemC. In particular, each SystemC thread is trans-
lated into a separate sequential program and explored with lazy
abstraction, while the overall verification is orchestrated by the
direct execution of the SystemC scheduler. The technique can be
seen as generalizing lazy abstraction to the case of multi-threaded
software with exclusive threads and cooperative scheduling.

The above approaches have been implemented in a new soft-
ware model checker. An experimental evaluation carried out on
several case studies taken from the SystemC distribution and from
the literature demonstrate the potential of the approach.

I. INTRODUCTION

The development of System-on-Chips (SoCs) is often started
by writing an executable model, using high-level languages
such as SystemC [1]. Verification of SystemC designs is an
important issue, since errors identified in such models can
reveal errors in the specification and prevent error propagation
down to the hardware.

SystemC is arguably becoming a de-facto standard, since it
allows for high-speed simulation before synthesizing the RTL
hardware description. However, formal verification of SystemC
is still at a preliminary stage. In fact, a SystemC design is a
very complex entity, that can be thought of as multi-threaded
software, where scheduling is cooperative and carried out ac-
cording to a specific set of rules [2], and the execution of threads
is mutually exclusive.

There have been several works that have tried to apply model
checking techniques to complement simulation [3]–[7]. These
approaches map the problem of SystemC verification to some
kind of model checking problem, but suffer from severe lim-
itations. Some of them disregard significant semantic aspects,
e.g., they fail to precisely model the SystemC scheduler or
the communication primitives. Others show poor scalability of

model checking, because of too many details included in the
model.

In this paper we present an alternative approach to the veri-
fication of safety properties (in the form of program assertions)
of SystemC designs, based on software model checking tech-
niques [8]–[11]. The primary motivation is to investigate the
effectiveness of such techniques, that have built-in abstraction
capabilities, and have shown significant success in the analysis
of sequential software.

We explore two directions. First, we rely on a translation
from SystemC to a sequential C program, that contains both the
mapping of the SystemC threads in form of C functions, and
the coding of relevant semantic aspects (e.g. of the SystemC
kernel). In terms of verification, this enables the “off-the-shelf”
use of model checking techniques for sequential software.

However, the exploration carried out during software model
checking treats in the same way both the code of the threads
and the kernel model. This turns out to be a problem, mostly
because the abstraction of the kernel is often too aggressive, and
many refinements are needed to re-introduce abstracted details.

Thus, we propose an improved approach, that exploits the in-
trinsic structure of SystemC. In particular, each SystemC thread
is translated into a separate sequential program and explored
with lazy abstraction, i.e. by constructing an abstract reachabil-
ity tree as in [8], [12]. The overall verification is orchestrated by
the direct execution of the SystemC scheduler, with techniques
similar to explicit-state model checking. This technique, in the
following referred to as Explicit-Scheduler/Symbolic Threads
(ESST) model checking, is not limited to SystemC: it lifts lazy
abstraction to the general case of multi-threaded software with
exclusive threads and cooperative scheduling.

We have implemented our approaches into a tool chain that
includes a SystemC front-end derived from PINAPA [13], and
a new software model checker, called SYCMC, using several
extensions built on top of NUSMV and MATHSAT [14]–[16].
We have been experimenting the two approaches on a set of
benchmarks taken and adapted from the SystemC distribution,
and from other works that are concerned with the verification
of SystemC designs. First, we have run several software model
checkers on the sequential C programs resulting from the trans-
lation of SystemC designs. Finally, we have experimented with
the new ESST model checking algorithm. The results, although
preliminary, are promising. In particular, the ESST algorithm
demonstrates dramatic speed ups over the first approach based
on the verification of sequentialized C programs.

The structure of this paper is as follows. In Section II we
introduce SystemC. In Section III we reduce model checking
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of SystemC designs to model checking of sequential C. In
Section IV we present ESST model checking. In Section V
we discuss some related work. We present the results of the
experimental evaluation in Section VI. Finally, in Section VII
we draw conclusions and outline some future work.

II. BACKGROUND ON SYSTEMC

SystemC is a C++ library that consists of (1) a core language
that allows one to model a SoC by specifying its components
and architecture, and (2) a simulation kernel (or scheduler)
that schedules and runs processes (or threads) of components.
SoC components are modeled as SystemC modules (or C++
classes). Channels abstract communication between modules,
while ports in a module are used to bind the modules with
channels. The SystemC library provides primitive channels
such as signal, mutex, semaphore and queue.

A module contains one or more threads describing the par-
allel behavior of the SoC design. The SystemC library also
provides general-purpose events used for the synchronization
between threads. A thread can suspend itself by waiting for
an event e, i.e. by calling wait(e), or by waiting for some
specified time, i.e. by calling wait(t), for some time unit t
≥ 0. A thread can perform immediate notification of an event
e, by calling e.notify(), or delayed notification, by calling
e.notify(t) for some time unit t.

The SystemC scheduler is a cooperative non-preempting
scheduler that runs at most one thread at a time. During a simu-
lation, the state of a thread changes from sleeping, to runnable,
and to running. A running thread will only give control back
to the scheduler by suspending itself. The scheduler runs all
runnable threads, one at a time, in a single delta cycle, while
postponing the channel updates made by the threads. When
there are no more runnable threads, the scheduler materializes
the channel updates, and wakes up all sleeping threads that are
sensitive to the updated channels. If, after this step, there are
some runnable threads, then the scheduler moves to the next
delta cycle. Otherwise, it accelerates the simulation time to the
nearest time point where a sleeping thread or an event can be
woken up. The scheduler quits if there is no more runnable
thread after time acceleration.

Listing 1 depicts an excerpt of a simple producer-consumer
example in SystemC. It defines the producer that has two
threads, write and read. The thread write sends the value
stored in the variable d to the consumer by calling the function
put in the consumer, and then wait for the event e to be
notified. The method thread read reads from the channel bound
to the input port p_in and notify the event e. It is sensitive to
the input port p_in. A method thread only suspends itself by
exiting the function and becomes runnable when the channel
bound to the port is updated. The function dont_initialize

makes the thread read not runnable at the beginning of simu-
lation. The consumer consists of two threads: compute and
write_b. The thread compute is triggered by the event f

notified by the function put that was called by the producer.
The interface write_if contains the signature of put and
is derived from the SystemC interface. The thread compute

1 SC MODULE( producer ) {
2 private :
3 i n t d ;
4 sc event e ;
5 public :
6 sc in<int> p in ;
7 sc port<w r i t e i f> p w ;
8 SC HAS PROCESS( producer ) ;
9

10 producer ( sc module name name) : sc module (name) {
11 SC THREAD( w r i t e ) ;
12 SC METHOD( read ) ; sensit ive << p in ; d o n t i n i t i a l i z e ( ) ;
13 }
14
15 void w r i t e ( ) {
16 i n t t ;
17 wait (SC ZERO TIME ) ;
18 while ( 1 ) {
19 t = d ; / / Save o ld value o f d .
20 p w−>put ( d ) ; / / Wr i te d ’ s value to consumer .
21 wait ( e ) ;
22 assert ( d == t +1 ) ;
23 }
24 }
25
26 void read ( ) { d = p in . read ( ) ; e . not i fy ( ) ; }
27 }
28
29 SC MODULE( consumer ) , public w r i t e i f {
30 private :
31 i n t data ;
32 sc event f , g ;
33 public :
34 sc out<int> p out ;
35 sc export<w r i t e i f> ex w ;
36 SC HAS PROCESS( consumer ) ;
37
38 consumer ( sc module name name) : sc module (name) {
39 ex w(∗ th is ) ;
40 SC THREAD( compute ) ;
41 SC THREAD( wr i te b ) ;
42 }
43
44 void put ( i n t d ) { data = d ; f . not i fy ( ) ; }
45
46 void compute ( ) {
47 while ( 1 ) {
48 wait ( f ) ; ++data ; g . not i fy ( ) ;
49 }
50 }
51
52 void wr i te b ( ) {
53 while ( 1 ) {
54 wait ( g ) ; p out . w r i t e ( data ) ;
55 }
56 }
57 };
58
59 i n t main ( ) {
60 sc signal<int> s ;
61 / / Create producer and consumer ins tances .
62 produce ∗ p = new producer ( ”P” ) ;
63 consumer ∗ c = new consumer ( ”C” ) ;
64 / / I n te rconnec t s i g n a l .
65 p−>p in ( s ) ; c−>p out ( s ) ;
66 / / I n te rconnec t modules .
67 p−>p w( c−>ex w ) ;
68 / / S t a r t s imu la t i on .
69 sc start ( ) ;
70 }

Listing 1. Definition of a producer/consumer design in SystemC.

increments the value sent by the producer, and then notifies the
event g that subsequently activates the thread write_b. The
thread write_b then writes the incremented value to the chan-
nel connecting the producer and the consumer through the port
p_out. Finally, the main function shows that the producer p
and the consumer c are connected via the signal channel s. The
export construct of SystemC allows communication between
components without any intermediate channel, as shown by the
binding of port p_w of producer and port ex_w of consumer.

III. MODEL CHECKING SYSTEMC VIA
SEQUENTIALIZATION

In this section we describe the translation from SystemC
designs into an equivalent sequential C programs by using the
producer-consumer example introduced in the previous section.

A. Translating SystemC to C

In our translation each thread in the SystemC design is
translated into a C function. Members of module instances,



1 i n t d ; /∗ Global v a r i a b l e f o r producer . ∗/
2 /∗ Events i n the design ∗/
3 i n t event e ; /∗ Status o f event e . ∗/
4 i n t event f ; /∗ Status o f event f . ∗/
5 i n t event g ; /∗ Status o f event g . ∗/
6 /∗ Local to thread producer : : w r i t e ( ) ∗/
7 i n t wr i te pc ; /∗ Program counter . ∗/
8 i n t w r i t e s t a t e ; /∗ Status o f thread . ∗/
9 i n t event wr i te ; /∗ Status o f thread event . ∗/

10 i n t t w r i t e ; /∗ Local v a r i a b l e t ∗/

Listing 2. Excerpt of the C preamble.

channels, and events are translated into a set of global variables.
We assume that the SystemC design does not contain any
dynamic creation of such components. We also assume that
each function call in the SystemC thread code can be inlined
statically.

To model context switches that occurs during the SystemC
simulation, for each thread t, we introduce the following
supporting variables: (1) t_pc keeps track of the program
counter of the thread; (2) t_state keeps track of the status
of the thread, whose possible values are SLEEP, RUNNABLE,
or RUNNING; (3) event_t describes the status of the event
associated with the thread, whose possible values are DELTA,
FIRED, TIME, or NONE; and (4) event_time_t keeps track
of the notification time of the event associate with the thread.
The status DELTA indicates that the event will be triggered at
the transition from current delta cycle to the next one. The
status TIME indicates that the event will be triggered at some
time in the future. The status FIRED indicates that the event
has just been triggered, while the status NONE indicates there is
no notification or triggering applied to the event. Similarly, for
each event e occurring in the design, we introduce a variable
event_e whose values range over event status and a variable
time_event_e that keeps track of the notification time. For
succinctness of presentation, we do not prefix the above vari-
ables with the names of module instances that own the threads.
Moreover, when the design has no time notification we omit the
TIME status and the variable that keeps track of the notification
time.

Member variables of a module instance are visible by all its
threads. Thus, they are translated into global variables in the C
program. For variables local to some thread, as context switches
require saving and restoring such variables, we introduce for
every local variable l of thread t a global variable l t of the
same type as l. Saving the value of l means assigning its value to
l t, while restoring the value of l means assigning l t’s value to
l. Listing 2 shows the variables introduced for the thread write
and for all the events of Listing 1.

Listing 3 shows the result of translating the thread write

of producer into a C function. First, the function is anno-
tated with program labels indicating the locations of context
switches. The function starts with a jump table whose targets
depend on the values of the program counter write_pc that
points to the location at which the thread has to resume its
execution. Second, we model calls to wait functions and their
variants by the following instructions: (1) an assignment setting
the thread’s status to SLEEP; (2) an assignment setting the
thread’s program counter to the location where the thread has to
resume its execution once it is woken up; (3) assignments sav-

1 void w r i t e ( ) {
2 i n t t ;
3 /∗ Local jump tab le ∗/
4 i f ( wr i te pc == WRITE ENTRY) goto WRITE ENTRY;
5 else i f ( wr i te pc == WRITE WAIT 2) goto WRITE WAIT 2 ;
6 else i f ( wr i te pc == WRITE WAIT 1) goto WRITE WAIT 1 ;
7 WRITE ENTRY:
8 /∗ wai t (SC ZERO TIME ) ; BEGIN ∗/
9 w r i t e s t a t e = SLEEP;

10 wr i te pc = WRITE WAIT 1 ;
11 event wr i te = DELTA;
12 t w r i t e = t ; /∗ Save t . ∗/
13 return ;
14 WRITE WAIT 1 :
15 t = t w r i t e ; /∗ Restore t . ∗/
16 /∗ wai t (SC ZERO TIME ) ; END ∗/
17 while ( 1 ) {
18 t = d ;
19 /∗ i n l i n e consumer : : put BEGIN ∗/
20 data = d ;
21 event f = FIRED ; /∗ f . n o t i f y ( ) BEGIN ∗/
22 ac t i va te th reads ( ) ;
23 event f = NONE; /∗ f . n o t i f y ( ) END ∗/
24 /∗ i n l i n e consumer : : put END ∗/
25 /∗ wai t ( e ) BEGIN ∗/
26 w r i t e s t a t e = SLEEP;
27 wr i te pc = WRITE WAIT 2 ;
28 t w r i t e = t ; /∗ Save t . ∗/
29 return ;
30 WRITE WAIT 2 :
31 t = t w r i t e ; /∗ Restore t . ∗/
32 /∗ wai t ( e ) END ∗/
33 assert ( d== t +1 ) ;
34 }
35 }

Listing 3. Sequential thread write of producer.

ing the values of thread’s local variables into the corresponding
global variables introduced above; (4) a return statement; (5) a
program label representing the location where the thread has to
resume its execution; and (6) assignments restoring the values
of thread’s local variables. For example, for wait(e) in the
thread write, we introduce the program label WRITE_WAIT_2
and set the program counter write_pc to WRITE_WAIT_2

before the function returns (see lines 25–32 of Listing 3). In the
case of wait(SC_ZERO_TIME) in the thread write, the thread
is suspended and will be woken up at the delta-cycle transition.
To model this, we set the variable event_write to DELTA.

An event e can be specified to be notified at immediate
time or at some time in the future. In the former case, ev-
ery thread that depends on the notified event has to be trig-
gered. To this end, we introduce for each thread t a function
is_t_triggered that returns 1 if the thread is triggered,
0 otherwise. Now immediate notifications can be modeled
by the following instructions: (1) an assignment setting the
event’s status to FIRED; (2) a list of queries checking if
threads are triggered, and if they are triggered, their status
are set to RUNNABLE; this list is represented by the function
activate_thread; and (3) an assignment setting the event’s
status to NONE. Lines 21–23 of Listing 3 shows the translation
of f.notify(). Listing 4 shows the code for thread activation.
The notification by e.notify(SC_ZERO_TIME) is modeled
similarly to wait(SC_ZERO_TIME), that is, we set the variable
event_e to DELTA. To model general time delayed notification,
one needs a statement that assigns the delayed notification time
to the variable associated with the event that keeps track of the
notification time.

Next, we inline the function calls in the SystemC code. For
instance, the inlining of the call p_w->put(d) in write is
shown in lines 19–24 of Listing 3. As we will discuss later,
function inlining can give advantages to the application of soft-
ware model checking techniques, particularly in the encoding
of the threads.



1 i n t i s w r i t e t r i g g e r e d ( ) {
2 i f ( ( wr i te pc == WRITE WAIT 1)
3 && ( even t wr i te == FIRED ) ) return 1;
4 i f ( ( wr i te pc == WRITE WAIT 2)
5 && ( event e == FIRED ) ) return 1;
6 return 0;
7 }
8
9 void ac t i va te th reads ( ) {

10 i f ( i s w r i t e t r i g g e r e d ( ) ) w r i t e s t a t e = RUNNABLE;
11 i f ( is compute t r iggered ( ) ) compute state = RUNNABLE;
12 i f ( i s w r i t e b t r i g g e r e d ( ) ) w r i t e b s ta te = RUNNABLE;
13 i f ( i s read t r i gge red ( ) ) read sta te = RUNNABLE;
14 }

Listing 4. Thread activation.

A signal channel s is represented by two global variables
s_old and s_new. Writing to and reading from a port bound to
the channel is modeled as, respectively, an assignment to s_new

and an assignment from s_old. For each channel, we include
the update function of the channel in the resulting C program.
For a signal s, the update function simply assigns s_old with
the value of s_new if their values are different.

The SystemC scheduler is included in the C program result-
ing from the translation. The scheduler is shown in Listing 5. It
consists of five phases: the initial phase, the evaluation phase,
the update phase, the delta-notification phase, and the time
phase. (We based the definition of the scheduler on [2])

In the initial phase all channels are updated by calling the
corresponding update functions. The function init_thread

changes the status of a thread to SLEEP if dont_initialize
is specified for the thread. The function fire_delta_events

simply changes the status of an event to FIRED if it was pre-
viously DELTA, while the function reset_events changes the
status to NONE. Similarly for the function fire_time_events.
In the evaluation phase, denoted by function eval, all runnable
threads are run one at a time. Unlike the original SystemC
scheduler that explores only one schedule, in the verification
we want to explore all possible schedules. To this end, we use
the function nondet() that returns a non-deterministic value.

The scheduler enters the update phase when there is no more
runnable thread. In the update phase all channels are updated.
The scheduler then moves to the delta-notification phase. This
phase signifies the transition from the current delta phase to the
next one. In this phase the scheduler triggers all events whose
status are DELTA, and subsequently wakes up triggered events.
The time phase is entered if there is no runnable thread after
the delta-notification phase. In this phase the scheduler simply
accelerates the simulation time. The scheduler quits if there
are no more runnable threads. Note that, this encoding of the
scheduler admits one impossible schedule where no runnable
threads are selected to run. However, the existence of such a
schedule is benign given we are focusing on the verification of
safety properties.

To complete the translation, all variables related to threads
and events must be initialized. The program counter is initial-
ized to the entry label, for example, write_pc is initialized
to WRITE_ENTRY. All variables whose values represent thread
status are initialized to RUNNABLE, and all variables whose
values represent event status are initialized to NONE. These ini-
tializations are performed in the function init_model called
by the main function.

This translation from SystemC to sequentialized C preserves

1 void eval ( ) {
2 while ( ex is ts runnab le th read ( ) ) {
3 i f ( w r i t e s t a t e == RUNNABLE && nondet ( ) )
4 { w r i t e s t a t e = RUNNING; w r i t e ( ) ; }
5 i f ( compute state == RUNNABLE && nondet ( ) )
6 { compute state = RUNNING; compute ( ) ; }
7 i f ( w r i t e b s ta te == RUNNABLE && nondet ( ) )
8 { wr i te b s ta te = RUNNING; wr i te b ( ) ; }
9 i f ( read sta te == RUNNABLE && nondet ( ) )

10 { read sta te = RUNNING; read ( ) ; }
11 }
12 }
13
14 void s t a r t s i m u l a t i o n ( ) {
15 update channels ( ) ; /∗ I n i t i a l i z a t i o n phase . ∗/
16 i n i t t h r e a d s ( ) ;
17 f i r e d e l t a e v e n t s ( ) ;
18 ac t i va te th reads ( ) ;
19 reset events ( ) ;
20 do {
21 eval ( ) ; /∗ Eva lua t ion phase . ∗/
22 update channels ( ) ; /∗ Update phase . ∗/
23 f i r e d e l t a e v e n t s ( ) ; /∗ Delta−n o t i f i c a t i o n phase . ∗/
24 ac t i va te th reads ( ) ;
25 reset events ( ) ;
26 i f ( ! ex is ts runnab le th read ( ) ) {
27 f i r e t ime even ts ( ) ; /∗ Time−n o t i f i c a t i o n phase . ∗/
28 ac t i va te th reads ( ) ;
29 reset events ( ) ;
30 }
31 } while ( ex is ts runnab le th read ( ) ) ;
32 }
33
34 i n t main ( ) {
35 i n i t mode l ( ) ; s t a r t s i m u l a t i o n ( ) ;
36 }

Listing 5. Sequential SystemC scheduler and main.

the behavior of the original SystemC design.

B. Model Checking (SystemC as) C

The translation from SystemC to C presented above opens
up the possibility to reduce the verification of a SystemC
design to the problem of verifying the translated C program.
Verification of C programs is possible by using existing soft-
ware model checkers, such as SATABS [17], BLAST [8], and
CPACHECKER [18]. We notice that these model checkers im-
plement approaches that are complementary to the ones that
have been proposed in the past to verify SystemC.

Among the above approaches, one particularly promising
is the idea of model checking via lazy abstraction [10]. The
approach is based on the construction and analysis of an
abstract reachability tree (ART) using predicate abstraction.
The approach can be seen as combining an exploration of the
control flow automaton (CFA) of the program with explicit-
state techniques, while the data path is analyzed by means
of predicate abstraction. (See also [8]–[11], [18] for a more
thorough discussion) The ART represents reachable abstract
states obtained by unwinding the CFA of the program. An
ART node typically consists of a control flow location, a call
stack, and a formula representing a region or data states (i.e.
assignments to each variable of the program of a value in its
domain).

An ART node is expanded by applying the strongest post
operator followed by predicate abstraction to the region and
the outgoing CFA edge of the location labelling the node [12],
[18]. When the expansion reaches an error location, if the path
from the root to the node with the error location is feasible,
then the path is a counter-example witnessing the error (or
assertion violation). Otherwise, the path is analyzed to discover
new predicates to track and to determine the point in the ART
where to start the refinement to discard the spurious behavior.

Predicate abstraction can benefit from advanced SMT tech-
niques like [15] and [16]. Large block encoding (LBE) for lazy-



abstraction has been proposed in [12] to reduce the number
of paths (and nodes) in the ART that have to be explored
independently. Intuitively, in LBE each edge in the CFA corre-
sponds to a rooted directed acyclic graph (DAG) in the original
CFA. Such an edge can be thought of as a summarization of
the corresponding rooted DAG in the original CFA. In LBE
function calls and loops in a program require block splitting.
As we want to keep the number of blocks as small as possible,
one can complementary apply function inlining to calls to
non-recursive functions and loop unrolling to the loops whose
bounds are known. The refinement can benefit from proof of
unsatisfiability and from interpolation based techniques. For
instance, in [11] it has been described an interpolation based
refinement approach where the relevant predicates at each lo-
cation of the infeasible path are inferred from the interpolant
between the two formulas that define the prefix and the suffix
of the path.

The idea of applying software model checking techniques to
the C program resulting from the translation of SystemC is, to
the best of our knowledge, novel. The hope is that the various
abstraction techniques may provide some leverage to tackle the
state explosion problem.

However, we remark that the exploration of the ART carried
out during software model checking will treat in the same
way both the code of the threads and the kernel model. In a
sense, a general purpose technique is being applied to programs
that have a very specific structure, resulting from the sequen-
tialization of concurrency. In the next section, we propose a
generalization to software model checking that exploits this
feature of the analyzed problems.

IV. EXPLICIT SCHEDULER + SYMBOLIC THREADS

In this section we propose a novel approach to the verification
of SystemC designs. First, unlike the previous approach, here
we decouple the scheduler from the threads. That is, the sched-
uler will no longer be part of the program, but is embedded in
the model checking algorithm. Second, we combine the explicit
model checking technique with the symbolic one based on lazy
predicate abstraction. In this combination we still represent the
state of each thread as a formula describing a region. But, unlike
the classical lazy abstraction, we keep track of the states of
scheduler explicitly. In the following, we refer to this technique
as Explicit-Scheduler/Symbolic Threads (ESST) model check-
ing. Fig. 1 shows an overview of this new approach.

We introduce several primitive functions to model SystemC
synchronization mechanism and for interacting with the model
checking algorithm. For example, the SystemC’s wait functions
wait(t) and wait(e) are modeled by primitive functions
wait(t) and wait_event(e), respectively. These primitive
functions perform synchronization by updating the state of the
scheduler. In the proposed algorithm the scheduler requires pre-
cise information about its state in order to schedule the threads.
To this end, we assume that in the SystemC design the values
of t and e in wait(t) and wait_event(e) can be determined
statically. This assumption does not limit the applicability of
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Fig. 1. An overview of the ESST approach.

our technique since, to the best of our knowledge, most real
SystemC designs satisfy the assumption.

A. Abstract Reachability Forest

We build an abstract reachability forest (ARF) to describe
reachable abstract states. An ARF consists of some ART’s,
each of which is obtained by unwinding the running thread.
The connections between one ART with the others in an ARF
describe context switches.

For a model with n threads, each node in the ARF is a tuple
(〈q1, s1, ϕ1〉, . . . , 〈qn, sn, ϕn〉, ϕ, S), where (1) qi, si, and ϕi

are, respectively, the program location, the call stack, and the
region of thread i, (2) ϕ is the region describing the data state
of global variables, and (3) S is the state of scheduler. The state
S does all the book keeping necessary to model the behavior
of the scheduler. For example, it keeps track of the status of
threads and events, the events that sleeping threads are waiting
for, and the delays of event notifications.

To expand the ARF, we need to execute primitive functions
and to explore all possible schedules. To this end, we introduce
the function SEXEC that takes as inputs a scheduler state and a
call to a primitive function f , and returns the updated scheduler
state obtained from executing f . For example, the state S′ =
SEXEC(S, wait_event(e)) is obtained from the state S by
changing the status of running thread to sleep, and noting that
the now sleeping thread is waiting for an event e.

We also introduce the function SCHED that implements the
scheduler. This function takes as an input a scheduler state and
returns a set of scheduler states, each of which has exactly
one running thread. These resulting states represent all possible
schedules.

To describe the expansion of a node in ARF, we as-
sume that there is at most one running thread in the sched-
uler state of the node. The rules for expanding a node
(〈q1, s1, ϕ1〉, . . . , 〈qn, sn, ϕn〉, ϕ, S) are as follows:
E1. If there is a running thread i in S such that the thread per-

forms an operation op, then the successor node is obtained
in the following way:



• If op is not a primitive function, then the suc-
cessor node is (〈q′1, s′1, ϕ′

1〉, . . . , 〈q′n, s′n, ϕ′
n〉, ϕ′, S′)

where ϕ′
i = SPπ(ϕi ∧ ϕ, op), ϕ′

j = SPπ(ϕj ∧
ϕ, HAVOC(op)) for j 6= i, ϕ′ = SPπ(ϕ, op), s′k = sk

for all k = 1, . . . , n, and S′ = S. SPπ(ϕ, op)
computes the abstract strongest post condition w.r.t.
precision π. In our case of predicate abstraction the
precision π can contain (1) a set of predicates that
are tracked for the global region ϕ, and (2) for all
i, a set of predicates that are tracked for each thread
region ϕi. HAVOC is a function that collects all global
variables that are possibly updated by the operation
op, and builds a new operation where these variables
are assigned with new fresh variables. We do this since
we do not want to leak variables local to the running
thread in order to update the region of other threads.

• If op is a primitive function, then the new node
is (〈q1, s1, ϕ1〉, . . . , 〈qn, sn, ϕn〉, ϕ, S′) where S′ =
SEXEC(S, op).

E2. If there is no more running thread in S, then for each
scheduler’s state S′ ∈ SCHED(S) we create a node
(〈q1, s1, ϕ1〉, . . . , 〈qn, sn, ϕn〉, ϕ, S′) such that the node
becomes the root node of a new ART that is then added
to the ARF. This represents the context switch that occurs
when a thread gives the control back to the scheduler.

In the same way as the classical lazy abstraction, one stops
expanding a node if the node is covered by other nodes. In our
case we say that a node (〈q1, s1, ϕ1〉, . . . , 〈qn, sn, ϕn〉, ϕ, S) is
covered by a node (〈q′1, s′1, ϕ′

1〉, . . . , 〈q′n, s′n, ϕ′
n〉, ϕ′, S′) if (1)

qi = q′i and si = s′i for i = 1, . . . , n, (2) S = S′, and (3) ϕ →
ϕ′ and

∧
i=1,...,n(ϕi → ϕ′

i) are valid. We also stop expanding a
node if the conjuction of all thread regions and the global region
is unsatisfiable.

We say that an ARF is complete if it is closed under the
expansion rules described above and there is no node that can
be expanded. An ARF is safe if it is complete and, for every
node (〈q1, s1, ϕ1〉, . . . , 〈qn, sn, ϕn〉, ϕ, S) in the ARF such that
ϕ ∧

∧
i=1,...,n ϕi is satisfiable, none of the locations q1, . . . , qn

are error locations.

B. ARF construction

The construction of an ARF starts with a single ART repre-
senting reachable states of the main function. In the root node
of that ART all regions are initialized with True, all thread
locations are set to the entries of the corresponding threads,
all call stacks are empty, and the only running thread in the
scheduler’s state is the main function. The main function then
suspends itself by calling a primitive function that starts the
simulation.

We expand the ARF using the rules E1 and E2 until either
the ARF is complete or we reach a node where one of the
thread’s location is an error location. In the latter case we build a
counterexample consisting of paths in the trees of the ARF and
check if the counterexample is feasible. If it is feasible, then we
have found a real counterexample witnessing that the program

Thread 1

0 1 2 3 4
op1 wait_event(e) scheduler op2−

2,310 4
op1 nop op2

Thread 2

Fig. 2. An example error path.

is unsafe. Otherwise, we use the spurious counterexample to
discover predicates to refine the ARF.

C. Counterexample analysis and predicate discovery

The counterexample in our proposed technique is built in a
similar way to that of in the classical lazy abstraction for se-
quential programs. In our case each call to a primitive function
is replaced with a nop (no operation). The connections between
trees induced by SCHED is removed and the two connected
nodes are collapsed into one.

Let us consider the path represented in Fig. 2. There are two
threads in this example. First, thread 1 moves from node 0 to
node 1 with operation op1, and then moves from node 1 to
node 2 with wait_event(e) that makes thread 1 sleep and
wait for the event e to be notified. The scheduler SCHED is
then executed, and this execution creates a connection from
node 2 to node 3, and also makes thread 2 as the running
thread. Finally, thread 2 moves from node 3 to error node 4
with operation op2. The counterexample is built by replacing
the call to wait_event(e) labeling the transition from node
2 to 3 with nop and by collapsing nodes 2 and 3 into a new
node 2,3. We thus obtain the path depicted in the lower part
of Fig. 2. This final path corresponds to a “standard” path in
the pure sequential software model checker, and is the path we
consider for the counterexample analysis.

When the formula corresponding to the error path built above
is unsatisfiable, then the proof of unsatisfiability is analyzed
in order to extract new predicates. These predicates are then
used to refine the abstraction in order to rule out this unfeasible
error path in the expansion of ARF. For this purpose we
re-use the same techniques used in the sequential case, e.g.
Craig interpolants and unsatisfiable core. The newly discovered
predicates are then used to update the precision. Depending on
the nature of the predicates, they can be associated to all threads
globally, which is the precision of the global region, or to a
specific thread, which is the precision of the thread region. Due
to lack of space, we refer the reader to [19] for a more thorough
discussion of the refinement process.

D. Parametric Summarization of Control Flow Automata

CFA summarization based on the large block encoding
(LBE) has been introduced in [12]. The encoding can also be
applied to summarize the CFA representing a thread.

We define a parameterized version of the LBE w.r.t. a set Γ ⊆
Ops of operations that is used to prevent the creation of a large
block. The algorithm to compute parametric LBE is a variant of
the algorithm described in [12]. First, a CFA is a tuple (L,G)
where L is a set of control locations and G ⊆ L×Ops×L is a
set of edges. Without loss of generality, we assume that the CFA
has at most one error location denoted by lE . The LBE of Γ-
CFA Summarization consists of the application of the rules we



describe below: we first apply the rule R1, and then repeatedly
apply the rule R2 and R3 until none of them are applicable.
R1. We remove all edges (lE , ∗, ∗) from G. This rule trans-

forms the error location into a sink location.
R2. If (l1, op, l2) ∈ G such that l1 6= l2, op 6∈ Γ, l2 has

no other incoming edges, and for all (l2, opi, li) ∈ G
we have opi 6∈ Γ, then L = L \ {l2} and G = (G \
{(l1, op, l2)}) ∪ {(l1, op; opi, li)|for all i}. If the current
operation op, or one of the outgoing operations is in Γ,
then we stop summarizing the current block.

R3. If (l1, op1, l2) ∈ G, (l1, op2, l2) ∈ G, and none of op1, op2

are in Γ then G = (G \ {(l1, op1, l2), (l1, op2, l2)}) ∪
{(l1, op1‖op2, l2)}. Intuitively, if there is a choice and
none of the two outgoing operations are in Γ, then we join
the operations.

Since the parameter of summarization only prevents the cre-
ation of large blocks, the correctness of summarization as stated
in [12] still holds for the above rules.

V. RELATED WORK

There have been some works on the verification of SystemC
designs. Scoot [20] is a tool that extracts from a SystemC design
a flat C++ model that can be analyzed by SATABS [17]. The
SystemC scheduler itself is included in the flat model. Scoot,
to the best of our knowledge, has only been used for race
analysis [21], and for synthesizing a static scheduler to speed
up simulation [22]. Our work on embedding the scheduler into
the model-checking algorithm can benefit from the techniques
described in [21] for reducing the number of schedules to
explore.

CheckSyC [4] is a tool used for property and equivalence
checking, and for simulation of SystemC designs. It relies on
SAT based bounded model checking (BMC) and thus does
not support unbounded loops. Moreover CheckSyC does not
support SystemC constructs that have no correspondence in
RTL, like channels.

Lussy [3] is a toolbox for the verification of SystemC designs
at TLM. The tool extracts from a SystemC design a set of
parallel automata that captures the semantics of the design,
including the SystemC scheduler. These automata are then
translated into Lustre or SMV model for the verification. The
results reported in [23] show that the approach does not scale.
An extension for the use of Spin is discussed in [6]. However,
this translation is manual. Moreover, it is bound to not scale-up
when the SystemC design requires to model nondeterministic
signals with a large domain like e.g. an integer. For us, this is
not a problem since we model them symbolically.

In [7] the SystemC design is encoded as a network of timed
automata where the synchronization mechanism is modeled
through channels. The execution semantics is specified through
a pre-determined model of the scheduler, and by means of
templates for events and threads. The resulting network of
automata is verified using the UPPAAL model checker. This
approach only supports bounded integer variables.

Formal verification of SystemC designs by abstracting away
the scheduler, that is encoded in each of the threads, has been

reported in [5]. This work does not handle channel updates and
time delays. Our translation from SystemC to C can adopt the
technique in the paper to simplify the resulting C program.

Works on the verification of multi-threaded C programs
are related to our work. Software model checkers for multi-
threaded programs such as Verisoft [24] and Zing [25] explore
states and transitions using explicit enumeration. Although
several state space reduction techniques (e.g. partial order re-
duction [26] and transaction based methods [27]) have been
proposed, they do not scale well because of the state explosion
caused by the thread interleaving. Extensions of the above
techniques by using symbolic encodings [28] combined with
bounded context switches [29] and abstraction [30] have been
proposed. In [31] an asynchronous modeling is used to reduce
the size of BMC problems. All of these techniques can be
applied to the verification of SystemC designs by properly
encoding the semantics of the SystemC scheduler. Our ap-
proach can benefit from these optimizations. In particular we
expect that partial-order reduction that can reduce the number
of schedules to explore will lead to dramatic improvements, but
we leave it as future work.

VI. EXPERIMENTAL EVALUATION

We have implemented a tool chain that supports the SystemC
verification approaches presented in this paper. The front-end
for handling SystemC is an extended version of PINAPA [13]
modified to generate the flattened pure sequential C program
described in Section III, and the output suitable for the new
algorithm described in Section IV.

To deal with the sequential C program, we have implemented
a new software model checker for C that we call SYCMC.
Inspired by BLAST [8], SYCMC implements lazy predicate
abstraction. Furthermore, SYCMC also provides LBE and the
Γ-CFA summarization described before. SYCMC is built on
top of an extended version of NUSMV [14] that integrates the
MathSAT [32] SMT solver and provides advanced algorithms
for performing predicate abstraction by combining BDDs and
SMT formulas [15], [16]. The new ESST model-checking
algorithm is implemented within SYCMC. In SYCMC as well
as in ESST each time we expand an ART (ARF) node we
perform the check to verify whether the newly generated node
is covered by another ART (ARF) node. Thus, it is fundamental
to perform this check as efficiently as possible. Similarly to
CPACHECKER, in SYCMC as well as in ESST we use BDDs
to represent the regions, and we exploit them for efficiently
checking whether a node is covered by another node.

A. Results

We used benchmarks taken and adapted from the SystemC
distribution [1], from [23], and from [33] to experiment with
our approaches. To the best of our knowledge, none of the tools
used in [3], [4], [7] is available for comparison. We first experi-
mented with the translation of SystemC models to C programs,
by running the benchmarks on the following model checkers:
SATABS [17], BLAST [8], CPACHECKER presented in [12],
and SYCMC. We then experimented the ESST algorithm of



SYCMC on the same set of benchmarks. As the model checkers
feature a number of verification options, we only consider what
turned out to be the best options for the benchmarks. For BLAST
we used the -foci option, while for CPACHECKER and for
SYCMC we applied LBE, depth first node expansion with
global handling of predicates, and restarting ART from scratch
when new predicates are discovered. We have experimented the
tools on an Intel-Xeon DC 3GHz running Linux, equipped with
4GB of RAM. We fixed the time limit to 1000 seconds, and the
memory limit to 2GB.

The results of experiments are shown on Table I. In the
second column we report S, U, or - to indicate that the veri-
fication status of the benchmark is safe, unsafe, or unavailable
respectively. The unavailability of the status is due to time or
memory out. In the remaining columns we report the running
time in seconds. We use T.O. for time out, M.O. for memory
out, and N.A. for not available.

The results show that the translation approach is feasible, but
the model checkers often reached timeout. This is because the
presence of the scheduler in the C program enlarges the search
space that has to be explored by the model checkers. Moreover,
we noticed that several iterations of refinement are needed to
discover predicates describing the status of the scheduler in
order to rule out spurious counterexamples. We notice that, as
far as these benchmarks are concerned, CPACHECKER outper-
forms BLAST, while we have cases where SYCMC performs
better than CPACHECKER, and others where it performs worse.
This is explained by the fact that the search in the two model
checkers, although similar may end-up exploring paths in a
different order and thus discovering different sets of predicates.

The table clearly shows that the ESST algorithm outper-
forms the other four approaches in most cases. In the case
of pipeline design CPACHECKER and SYCMC outperform
the ESST algorithm. It turns out that for the verification of
this design precise details of the scheduler are not needed.
CPACHECKER and SYCMC are able to exploit this character-
istic and thus they end up exploring less abstract states than
ESST. Indeed, for this design the ESST algorithm needs to
explore many possible schedules that can be reduced by using
techniques like partial-order reduction. For the mem-slave de-
sign SATABS outperforms other model checkers. SYCMC and
ESST employ a precise Boolean abstraction in the expansion
of the ART. Such an abstraction is expensive when there are a
large number of predicates involved. For this design, SYCMC
and ESST already discovered about 70 predicates in the early
refinement steps. SATABS also discovered a quite large number
of predicates (51 predicates). However, it performs a cheap
approximated abstraction that turns out to be sufficient for the
verification of this design.

All the benchmarks and the executable to reproduce the
results reported in this paper are available at http://es.fbk.eu/
people/roveri/tests/fmcad2010.

B. Limitations

The approaches presented in this paper assume that the Sys-
temC design does not contain any dynamic creation of threads,

Sequentialized ESST
Name V SATABS BLAST CPAC. SYCMC SYCMC
toy1 S 22.790 T.O. 282.230 57.300 1.990
toy2 U 28.050 T.O. 621.120 35.300 0.690
toy3 U 20.290 T.O. 141.780 22.390 0.190
token-ring1 S 16.520 97.2000 14.590 36.990 0.010
token-ring2 S 62.240 888.2900 30.330 540.160 0.090
token-ring3 S 152.360 T.O. 141.860 T.O 0.190
token-ring4 S 602.300 T.O. 911.300 T.O 0.400
token-ring5 S T.O. T.O. T.O. T.O 1.000
token-ring6 S T.O. T.O. T.O. T.O 2.500
token-ring7 S T.O. T.O. T.O. T.O 6.390
token-ring8 S T.O. T.O. T.O. T.O 18.400
token-ring9 S T.O. T.O. T.O. T.O 54.290
token-ring10 S T.O. T.O. T.O. T.O 201.980
token-ring11 - T.O. T.O. T.O. T.O M.O
transmitter1 U 2.230 1.2700 11.850 6.200 0.010
transmitter2 U 26.920 29.4000 18.210 640.750 0.010
transmitter3 U 61.460 501.3500 44.320 176.290 0.010
transmitter4 U 190.620 T.O. 113.490 T.O 0.090
transmitter5 U 472.180 T.O. 296.580 T.O 0.190
transmitter6 U T.O. T.O. 969.530 T.O 0.500
transmitter7 U T.O. T.O. T.O. T.O 1.390
transmitter8 U T.O. N.A. T.O. T.O 3.690
transmitter9 U T.O. N.A. T.O. T.O 11.690
transmitter10 U T.O. T.O. T.O. T.O 40.590
transmitter11 U T.O. T.O. T.O. T.O 150.480
transmitter12 - T.O. T.O. T.O. T.O M.O
pipeline S T.O. T.O. 130.610 178.490 T.O
kundu1 S 139.440 T.O. 232.310 T.O 2.900
kundu2 U 41.500 245.8500 57.160 T.O 0.900
kundu3 U 110.550 T.O. 129.370 T.O 2.900
bistcell S 36.600 T.O. 10.560 38.000 1.090
pc-sfifo1 S 4.260 46.6500 13.110 7.690 0.300
pc-sfifo2 S 5.210 300.3800 28.490 34.790 0.300
mem-slave S 77.210 T.O. T.O. T.O 677.010

TABLE I: RESULTS FOR EXPERIMENTAL EVALUATION.

channels, and module instances. In particular, in the sequential-
ization approach the encoding of the scheduler requires those
components to be known a priori. For example, to encode the
evaluation and the channel update phases (the functions eval
and update_channels, respectively) one needs to know all
threads and channels that are involved in the simulation. In
the threaded C approach we assume the values of t and e in
wait(t) and wait_event(e) can be determined statically.
Similarly for the translation to threaded C and in the ESST
algorithm, at the moment we do not support dynamic creation
of threads, channels, and module instances. It turns out that
also the SystemC front-end we use for our translator suffers of
these limitations. Indeed, PINAPA parses the SystemC design
and executes it until the point just before the simulation begins.
At that point PINAPA gives access to the abstract syntax tree
(AST) of the design and to all the ground SystemC objects
(i.e. module instances, channels, and threads) of the design. We
remark that, these limitations do not affect the applicability of
the proposed techniques since, to the best of our knowledge,
most real SystemC design satisfy this assumption.

The PINAPA SystemC front-end at the current stage of de-
velopment suffers of many other limitations. For example, as
far as we know, it does not recognize all SystemC transaction-
level modeling (TLM) constructs and does not fully support
function pointers. Because of these limitations, our translator
from SystemC to sequential C (and also to threaded C) does not
handle such constructs either. For the experiments presented
in this paper we extended PINAPA to handle simple TLM



constructs like sc_export. Support for additional SystemC
constructs can be added to PINAPA with a reasonable effort.

As far as the limitations of our translator are concerned, we
do not yet support rich C++ features like standard template
library (STL) data structures and respective constructs, and we
do not yet support pointers, arrays, and dynamic creation of
objects. To this end, we remark that most of the software model
checkers currently available are not able to fully support all of
them. We remark that, our translator can be extended to support
such constructs wit a reasonable effort.

Finally, the new SYCMC and ESST model checkers are not
yet able to handle designs that use complex data types (like
e.g. records), pointers, arrays, dynamic creation of objects, and
recursive function. However, support for all these constructs is
currently argument of future extensions of the tools.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented two novel approaches aiming
at lifting software model checking techniques to the verification
of SystemC designs. We first presented a conversion of a
SystemC design into an C program that can be verified by
any off the shelf software model checker for C. Second, we
presented a novel model checking algorithm that combines
an explicit model checking technique to model the states of
SystemC scheduler with lazy abstraction. Both approaches have
been implemented in a tool set and an experimental evaluation
was carried out showing the potential of the approach and the
fact that the new algorithm outperforms the first approach.

As future work, we will investigate the applicability of static
and dynamic partial order techniques to reduce the number of
paths to explore. We will extend the set of primitives to interact
with the scheduler to better handle TLM constructs. Moreover,
we will investigate the possibility to handle the scheduler semi-
symbolically by enumerating possible next states exploiting
SMT techniques as to eliminate the current limitations of the
ESST approach. Finally, we will also extend our back-end to
support richer data like e.g. arrays [34], [35].
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