Solving Temporal Problems using SMT: Weak Controllability

Alessandro Cimatti **Andrea Micheli** Marco Roveri

Embedded Systems Unit, Fondazione Bruno Kessler Trento, Italy amicheli@fbk.eu AAAI 2012

25th July 2012

Temporal Problem View

- A^s , B^s are **Controllable Time Points** A^e , B^e are **Uncontrollable Time Point**
- → represents **Free Constraints**
- *WAY* represents **Contingent Constraints**

Schedules

Schedules

Schedules

Constraint Taxonomy

Notation

- \bullet X_c is the set of controllable time points
- \bullet X_u is the set of uncontrollable time points
- \bullet C_c is the set of contingent constraints
- C_f is the set of free constraints

Constraint Taxonomy

Notation

- \bullet X_c is the set of controllable time points
- \bullet X_u is the set of uncontrollable time points
- \bullet C_c is the set of contingent constraints
- C_f is the set of free constraints

In this paper: Weak Controllability

Definition

A Temporal Problem with Uncertainty is **Weakly Controllable** if and only if

$$
\forall \vec{X}_u. \exists \vec{X}_c. (C_c(\vec{X}_c, \vec{X}_u) \rightarrow C_f(\vec{X}_c, \vec{X}_u))
$$

In this paper: Weak Controllability

Definition

A Temporal Problem with Uncertainty is **Weakly Controllable** if and only if

$$
\forall \vec{X}_u. \exists \vec{X}_c. (C_c(\vec{X}_c, \vec{X}_u) \rightarrow C_f(\vec{X}_c, \vec{X}_u))
$$

Strategies

A (clairvoyant) winning strategy is a function $f: \vec{X}_u \rightarrow \vec{X}_c$ such that

$$
\forall \vec{X}_u. (C_c(f(\vec{X}_u), \vec{X}_u) \rightarrow C_f(f(\vec{X}_u), \vec{X}_u))
$$

¹ **Decision procedure for Weak Controllability**

- Formalization in Linear Real Arithmetic logic
- Efficient encodings in Satisfiability Modulo Theory (SMT)
- Not discussed in this talk

¹ **Decision procedure for Weak Controllability**

- Formalization in Linear Real Arithmetic logic
- \bullet Efficient encodings in Satisfiability Modulo Theory (SMT)
- Not discussed in this talk

² **Strategy extraction algorithms for STPU**

- Algorithms for linear strategy extraction
- Proof of non-linear strategy in general
- Algorithms for piecewise linear strategy extraction

- [Piecewise linear strategies](#page-50-0)
- [Experimental Evaluation](#page-64-0)

[Preliminaries](#page-20-0)

[Linear strategies](#page-35-0)

[Piecewise linear strategies](#page-50-0)

[Experimental Evaluation](#page-64-0)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T .

A formula ϕ is satisfiable if there exists a model μ such that $\mu \models \phi$.

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T .

A formula ϕ is satisfiable if there exists a model μ such that $\mu \models \phi$.

Example

 $\exists y, z. (\forall x.(x > 0) \vee (y \geq x)) \wedge (z \geq y))$ is satisfiable in the theory of real arithmetic because

 $\mu = \{(y,6), (z,8)\}\$

is a model that satisfies *φ*.

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T .

A formula ϕ is satisfiable if there exists a model μ such that $\mu \models \phi$.

Example

 $\exists y, z. (\forall x.(x > 0) \vee (y \geq x)) \wedge (z \geq y))$ is satisfiable in the theory of real arithmetic because

 $\mu = \{(y,6), (z,8)\}\$

is a model that satisfies *φ*.

Theories

SMT procedures support various theories.

In this work:

- LRA (Linear Real Arithmetic)
- QF LRA (Quantifier-Free LRA)

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T .

A formula ϕ is satisfiable if there exists a model μ such that $\mu \models \phi$.

Example

 $\exists y, z. (\forall x.(x > 0) \vee (y \geq x)) \wedge (z \geq y))$ is satisfiable in the theory of real arithmetic because

 $\mu = \{(y,6), (z,8)\}\$

is a model that satisfies *φ*.

Theories

SMT procedures support various theories.

In this work:

- LRA (Linear Real Arithmetic)
- QF LRA (Quantifier-Free LRA)

Weak Controllability definition immediately maps in SMT (LRA)

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e - b) ∈ [l, u]$, we introduce an offset $y \doteq b + u - e$. b $b+l$ e $b+u$ Time $b + l$ e $b + u$ y

Let $e \in X_u$ and $b \in X_c$.

For every contingent constraint $(e - b) ∈ [l, u]$, we introduce an offset y

Offset Rewriting

• Let \tilde{Y}_u be the offsets for a given Temporal Problem with Uncertainty

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e - b) ∈ [l, u]$, we introduce an offset $y \doteq b + u - e$. y

- Let \tilde{Y}_u be the offsets for a given Temporal Problem with Uncertainty
- Let $\Gamma(\vec{Y}_u)$ be the rewritten Contingent Constraints

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e - b) ∈ [l, u]$, we introduce an offset $y \doteq b + u - e$. y

- Let \tilde{Y}_u be the offsets for a given Temporal Problem with Uncertainty
- Let $\Gamma(\vec{Y}_u)$ be the rewritten Contingent Constraints
- Let $\Psi(\vec{X}_c, \vec{Y}_u)$ the rewritten Free Constraints.

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e - b) ∈ [l, u]$, we introduce an offset $y \doteq b + u - e$. y

- Let \tilde{Y}_u be the offsets for a given Temporal Problem with Uncertainty
- Let $\Gamma(\vec{Y}_u)$ be the rewritten Contingent Constraints
- Let $\Psi(\vec{X}_c, \vec{Y}_u)$ the rewritten Free Constraints.
- Weak Controllability becomes $\forall \vec{Y}_u \exists \vec{X}_c . (\Gamma(\vec{Y}_u) \rightarrow \Psi(\vec{X}_c, \vec{Y}_u))$

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e - b) ∈ [l, u]$, we introduce an offset $y \doteq b + u - e$. y

- Let \tilde{Y}_u be the offsets for a given Temporal Problem with Uncertainty
- Let $\Gamma(\vec{Y}_u)$ be the rewritten Contingent Constraints
- Let $\Psi(\vec{X}_c, \vec{Y}_u)$ the rewritten Free Constraints.
- \bullet Weak Controllability becomes $\forall \vec{Y}_u \exists \vec{X}_c . (\Gamma(\vec{Y}_u) \rightarrow \Psi(\vec{X}_c, \vec{Y}_u))$
- A winning strategy is now a function $f: \vec{Y}_{\mu} \rightarrow \vec{X}_{c}$

Given the solution space **P**, in the space of \vec{X}_c and \vec{Y}_u , a strategy is a (possibly non-continuous) surface S, such that $P \cap S$ projected in the space of \tilde{Y}_u only, contains the polyhedron $\Gamma(\tilde{Y}_u)$.

Given the solution space **P**, in the space of \vec{X}_c and \vec{Y}_u , a strategy is a (possibly non-continuous) surface **S**, such that P ∩S **projected in the space of** \vec{Y}_u only, contains the polyhedron $\Gamma(\vec{Y}_u)$.

Given the solution space **P**, in the space of \vec{X}_c and \vec{Y}_u , a strategy is a (possibly non-continuous) surface **S**, such that P ∩S **projected in the space of** \vec{Y}_u only, contains the polyhedron $\Gamma(\vec{Y}_u)$.

Given the solution space **P**, in the space of \vec{X}_c and \vec{Y}_u , a strategy is a (possibly non-continuous) surface **S**, such that P ∩S **projected in the space of** \vec{Y}_u only, contains the polyhedron $\Gamma(\vec{Y}_u)$.

Example

If S is a (hyper-)plane, the strategy is linear, i.e.

$$
f(\vec{y}) \doteq A \cdot \vec{y} + \vec{b}
$$

[Preliminaries](#page-20-0)

[Linear strategies](#page-35-0)

[Piecewise linear strategies](#page-50-0)

[Experimental Evaluation](#page-64-0)

Linearity is not enough

Theorem

Not every weakly controllable STPU admits a linear strategy.

Linearity is not enough

Theorem

Not every weakly controllable STPU admits a linear strategy.

 y_1

3

Encoding in SMT (QF_LRA)

(Another) Example

 $\Gamma(y_1, y_2) \doteq y_1 \ge 0 \land y_1 \ge 0 \land$ $y_1 \leq 3 \wedge y_2 \leq 1$ $f(\vec{y}) \doteq (a_1 a_2) \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ y_2 $\Big\} + b$

 $\exists a_1, a_2, b. \forall y_1, y_2.$ $\Gamma(y_1,y_2) \rightarrow \Psi(f(a_1,a_2,b),y_1,y_2)$

Encoding in SMT (QF_LRA)

(Another) Example

 $\Gamma(y_1, y_2) \doteq y_1 \ge 0 \land y_1 \ge 0 \land$ $y_1 \leq 3 \wedge y_2 \leq 1$ $f(\vec{y}) \doteq (a_1 a_2) \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ y_2 $\Big\} + b$

 $\exists a_1, a_2, b. \forall y_1, y_2.$ $\Gamma(y_1,y_2) \rightarrow \Psi(f(a_1,a_2,b),y_1,y_2)$

 $Enc(a_1, a_2, c) \doteq$

Encoding in SMT (QF_LRA)

(Another) Example

 $\Gamma(y_1, y_2) \doteq y_1 \ge 0 \land y_1 \ge 0 \land$ $y_1 \leq 3 \wedge y_2 \leq 1$ $f(\vec{y}) \doteq (a_1 a_2) \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ y_2 $\Big\} + b$

 $\exists a_1, a_2, b. \forall y_1, y_2.$ $\Gamma(y_1, y_2) \to \Psi(f(a_1, a_2, b), y_1, y_2)$

 $Enc(a_1, a_2, c) \doteq \Psi(0a_1 + 0a_2 + b, 0, 0) \wedge$

[The Controllability Problem](#page-1-0) [Preliminaries](#page-20-0) [Linear strategies](#page-35-0) [Piecewise linear strategies](#page-50-0) [Experimental Evaluation](#page-64-0) [Conclusion](#page-67-0)
0000000 000000 000 \circ

Encoding in SMT (QF_LRA)

(Another) Example

$$
\Gamma(y_1, y_2) \doteq y_1 \ge 0 \land y_1 \ge 0 \land y_2 \le 1
$$

$$
y_1 \le 3 \land y_2 \le 1
$$

$$
f(\vec{y}) \doteq (a_1 a_2) \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + b
$$

$$
\exists a_1, a_2, b. \forall y_1, y_2. \Gamma(y_1, y_2) \rightarrow \Psi(f(a_1, a_2, b), y_1, y_2)
$$

$$
Enc(a_1, a_2, c) \doteq \Psi(0a_1 + 0a_2 + b, 0, 0) \wedge
$$

$$
\Psi(0a_1 + 1a_2 + b, 0, 1) \wedge
$$

Encoding in SMT (QF_LRA)

(Another) Example

 $\Gamma(y_1, y_2) \doteq y_1 \ge 0 \land y_1 \ge 0 \land$ $y_1 \leq 3 \wedge y_2 \leq 1$ $f(\vec{y}) \doteq (a_1 a_2) \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ y_2 $\Big\} + b$ $\exists a_1, a_2, b, \forall y_1, y_2$.

$$
\Gamma(y_1, y_2) \to \Psi(f(a_1, a_2, b), y_1, y_2)
$$

$$
Enc(a_1, a_2, c) \doteq \Psi(0a_1 + 0a_2 + b, 0, 0) \wedge
$$

$$
\Psi(0a_1 + 1a_2 + b, 0, 1) \wedge
$$

$$
\Psi(3a_1 + 0a_2 + b, 3, 0) \wedge
$$

[The Controllability Problem](#page-1-0) [Preliminaries](#page-20-0) [Linear strategies](#page-35-0) [Piecewise linear strategies](#page-50-0) [Experimental Evaluation](#page-64-0) [Conclusion](#page-67-0)
0000000 000000 000 \circ

Encoding in SMT (QF_LRA)

(Another) Example

$$
\Gamma(y_1, y_2) \doteq y_1 \ge 0 \land y_1 \ge 0 \land y_2 \le 1
$$

$$
y_1 \le 3 \land y_2 \le 1
$$

$$
f(\vec{y}) \doteq (a_1 a_2) \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + b
$$

$$
\exists a_1, a_2, b. \forall y_1, y_2.
$$

\n
$$
\Gamma(y_1, y_2) \to \Psi(f(a_1, a_2, b), y_1, y_2)
$$

\n
$$
Enc(a_1, a_2, c) \doteq \Psi(0a_1 + 0a_2 + b, 0, 0) \land
$$

$$
\Psi\big(0a_1+1a_2+b, \, 0, \, 1\big)\,\wedge
$$

$$
\Psi(3a_1+0a_2+b,3,0)\wedge
$$

$$
\Psi(3a_1 + 1a_2 + b, 3, 1)
$$

Example

Observed uncontrollable offsets:

- \bullet ϕ
- ${y_1}$
- $\{y_2\}$
- $\{y_1, y_2\}$

Example

Observed uncontrollable offsets:

- \bullet φ
- ${y_1}$
- $\{y_2\}$
- $\{y_1, y_2\}$

Example

Observed uncontrollable offsets:

- \bullet \emptyset
- ${y_1}$
- ${y_2}$
- $\{y_1, y_2\}$

Example

Intuition

If we do not observe the i -th variable, the i -th column in the matrix is filled with 0.

[Preliminaries](#page-20-0)

[Linear strategies](#page-35-0)

[Experimental Evaluation](#page-64-0)

Definitions

Piecewise linear strategies

 f is a piecewise linear strategy if it has the form

...

$$
f(\vec{y}) \doteq \text{If } \phi_1(\vec{y}) \text{ then } A_1 \cdot \vec{y} + \vec{b}_1;
$$

If $\phi_2(\vec{y})$ then $A_2 \cdot \vec{y} + \vec{b}_2;$

If $\phi_n(\vec{y})$ then $A_n \cdot \vec{y} + \vec{b}_n$;

Definitions

Piecewise linear strategies

f is a piecewise linear strategy if it has the form

...

$$
f(\vec{y}) \doteq \text{If } \phi_1(\vec{y}) \text{ then } A_1 \cdot \vec{y} + \vec{b}_1;
$$

If $\phi_2(\vec{y})$ then $A_2 \cdot \vec{y} + \vec{b}_2;$

If
$$
\phi_n(\vec{y})
$$
 then $A_n \cdot \vec{y} + \vec{b}_n$;

Simplexes

An *n*-simplex is an *n*-dimensional polytope which is the convex hull of its $n+1$ vertexes. E.g.

- \bullet 2-d \rightarrow Triangle
- \bullet 3-d \rightarrow Tetrahedron

Enumerating all the maximal simplexes

(Another) Example

Enumerating all the maximal simplexes

(Another) Example

Strategy: If $y_2 \le -\frac{1}{3}$ $\frac{1}{3}y_1 + 1$ then S_1 ;

Enumerating all the maximal simplexes

(Another) Example

Strategy:

If
$$
y_2 \le -\frac{1}{3}y_1 + 1
$$
 then S_1 ;
If $y_2 > -\frac{1}{3}y_1 + 1$ then S_2 ;

Idea

Pick a simplex $R(\vec{Y}_u)$ in $\Gamma(\vec{Y}_u)$, find a linear strategy $S(\vec{Y}_u)$ for $R(\vec{Y}_u)$, and remove the region where $S(\vec{Y}_u)$ is applicable from Γ (\vec{Y}_u) . Iterate until Γ (\vec{Y}_u) is empty.

Idea

Pick a simplex $R(\vec{Y}_u)$ in $\Gamma(\vec{Y}_u)$, find a linear strategy $S(\vec{Y}_u)$ for $R(\tilde{Y}_u)$, and remove the region where $S(\tilde{Y}_u)$ is applicable from Γ (\vec{Y}_u) . Iterate until Γ (\vec{Y}_u) is empty.

Idea

Pick a simplex $R(\vec{Y}_u)$ in $\Gamma(\vec{Y}_u)$, find a linear strategy $S(\vec{Y}_u)$ for $R(\tilde{Y}_u)$, and remove the region where $S(\tilde{Y}_u)$ is applicable from Γ (\vec{Y}_u) . Iterate until Γ (\vec{Y}_u) is empty.

Idea

Pick a simplex $R(\vec{Y}_u)$ in $\Gamma(\vec{Y}_u)$, find a linear strategy $S(\vec{Y}_u)$ for $R(\tilde{Y}_u)$, and remove the region where $S(\tilde{Y}_u)$ is applicable from Γ (\vec{Y}_u) . Iterate until Γ (\vec{Y}_u) is empty.

Idea

Pick a simplex $R(\vec{Y}_u)$ in $\Gamma(\vec{Y}_u)$, find a linear strategy $S(\vec{Y}_u)$ for $R(\tilde{Y}_u)$, and remove the region where $S(\tilde{Y}_u)$ is applicable from Γ (\vec{Y}_u) . Iterate until Γ (\vec{Y}_u) is empty.

Example

Strategy:

If $y_1 \ge y_2$ then S_1 ;

Idea

Pick a simplex $R(\vec{Y}_u)$ in $\Gamma(\vec{Y}_u)$, find a linear strategy $S(\vec{Y}_u)$ for $R(\tilde{Y}_u)$, and remove the region where $S(\tilde{Y}_u)$ is applicable from Γ (\vec{Y}_u) . Iterate until Γ (\vec{Y}_u) is empty.

Example

Strategy:

If $y_1 \ge y_2$ then S_1 ;

Idea

Pick a simplex $R(\vec{Y}_u)$ in $\Gamma(\vec{Y}_u)$, find a linear strategy $S(\vec{Y}_u)$ for $R(\tilde{Y}_u)$, and remove the region where $S(\tilde{Y}_u)$ is applicable from Γ (\vec{Y}_u) . Iterate until Γ (\vec{Y}_u) is empty.

Example

Strategy:

If $y_1 \ge y_2$ then S_1 ;

Idea

Pick a simplex $R(\vec{Y}_u)$ in $\Gamma(\vec{Y}_u)$, find a linear strategy $S(\vec{Y}_u)$ for $R(\tilde{Y}_u)$, and remove the region where $S(\tilde{Y}_u)$ is applicable from Γ (\vec{Y}_u) . Iterate until Γ (\vec{Y}_u) is empty.

Example

Strategy:

If $y_1 \ge y_2$ then S_1 ; If $y_1 < y_2$ then S_2 ;

[Preliminaries](#page-20-0)

2 [Linear strategies](#page-35-0)

3 [Piecewise linear strategies](#page-50-0)

4 [Experimental Evaluation](#page-64-0)

[Conclusion](#page-67-0)

Scalability of strategy extraction algorithms

- Random instance generator derived from $TSAT++$ experiments
- **o** Implementation
	- Python implementation
	- MathSAT5 API
- 4 algorithms
	- **a** Linear
	- **•** Incremental Weakening
	- All simplexes
	- Lazy
- 1354 weakly controllable instances admitting a linear strategy

Extracted strategy size

[Preliminaries](#page-20-0)

[Linear strategies](#page-35-0)

[Piecewise linear strategies](#page-50-0)

[Experimental Evaluation](#page-64-0)

Conclusions

Contributions

- SMT-based approach for Weak Controllability in the general case
- Algorithms for *STPU* linear strategy extraction
- Proof of non-linear strategy existence
- Algorithms for *STPU* piecewise linear strategy extraction

Conclusions

Contributions

- SMT-based approach for Weak Controllability in the general case
- Algorithms for STPU linear strategy extraction
- Proof of non-linear strategy existence
- Algorithms for $STPU$ piecewise linear strategy extraction

Future works

- Cost function optimization (Considering trade-off between linearity and optimality)
- **•** Dynamic Controllability

Thanks for your attention!