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Constraint Taxonomy

@ X is the set of controllable time points

@ X, is the set of uncontrollable time points

@ C. is the set of contingent constraints

@ Cr is the set of free constraints

Type of constraint in Cr

Problem class

Vo ((Xi, =X, ) € [lw, tw])

No disjunctions STPU
(X,' — XJ) € [/, u] Simple Temporal Problem with Uncertainty

Interval disjunctions TCSPU
(xi— Xj) € Uw[lw, uw] Temporal Constraint Satisfaction Problem with Uncertainty

Arbitrary disjunctions DTPU

Disjunctive Temporal Problem with Uncertainty
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In this paper: Weak Controllability

Definition

A Temporal Problem with Uncertainty is Weakly Controllable if
and only if
V Xy 3Xce (Ce(Xe, Xy) — C,c(XC,X )

Strategies

A (clairvoyant) winning strategy is a function f : X, — X, such that

¥ Xu(Ce(F(Xu), Xu) = Cr(F(Xu), Xu))
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Contributions

© Decision procedure for Weak Controllability

o Formalization in Linear Real Arithmetic logic
o Efficient encodings in Satisfiability Modulo Theory (SMT)
o Not discussed in this talk

@ Strategy extraction algorithms for STPU

e Algorithms for linear strategy extraction
e Proof of non-linear strategy in general
o Algorithms for piecewise linear strategy extraction
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SMT is the problem of deciding satisfiability of a first-order
Boolean combination of theory atoms in a given theory T.

A formula ¢ is satisfiable if there exists a model u such that u = ¢.
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is satisfiable in the theory of real theories.
arithmetic because

In this work:
p=1(y.6), (2 8)} o LRA (Linear Real Arithmetic)
is a model that satisfies ¢. ® QF_LRA (Quantifier-Free LRA)

Weak Controllability definition immediately maps in SMT (LRA)
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o Let (X, Y,) the rewritten Free Constraints.
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Strategies: Intuition

Given the solution space P, in the space of X and Y,, a strategy
is a (possibly non- contlnuous) surface S, such that PnS projected
in the space of Y, only, contains the polyhedron I'(Y,).

Example

X1

If Sis a (hyper-)plane, the
strategy is linear, i.e.

f(y)=A-y+b

9/18
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(Another) Example

F(yl,yg) =y120Ay1 =0A
y1=3Ay =<l

NS y1
f(y) = . +b
3) = @a)( 2

Jay, a2, b.Vy1, .

r(Yl,)Q) - \P(f(al’aZ’b)rylyyZ)

Enc(ay,az,¢) = W(0a1 +0az+ b, 0,0) A
W(0a;+1ap+b,0,1)A
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Encoding in SMT (QF_LRA)

(Another) Example

F(yl,yg) =y120Ay1 =0A
y1=3Ay =<l

NS y1
f(y) = . +b
3) = @a)( 2

Jay, a2, b.Vy1, .

r(}/l,}/2) - \P(f(al’aZ’b)rylryZ)

Enc(ay,az,¢) = W(0a1 +0az+ b, 0,0) A
W(0a;+1ap+b,0,1)A

(

(

W(3a;+0azx+b,3,0)A
Y(3a; +1ar + b, 3, 1)

V.
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Incremental Weakening

X1

Observed uncontrollable
offsets:

° g

o {y1}

o {y2}

o {y1,y2}

Intuition

If we do not observe the i-th variable, the i-th column in the
matrix is filled with 0.

v
12/18
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Definitions

Piecewise linear strategies

f is a piecewise linear strategy if it has the form

f(y) = If ¢1(¥) then A1-)7+El;
If ¢2(7) then Az-y + by;

If ¢,(7) then A,y + by;
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Piecewise linear strategies
®00

Definitions

Piecewise linear strategies

f is a piecewise linear strategy if it has the form

f(y) = If ¢1(¥) then A1-)7+El;
If p2(y) then Ay-y +by;

If ¢n(¥) then A,-7 + by;

An n-simplex is an n-dimensional polytope which is the convex hull
of its n+1 vertexes. E.g.

@ 2-d — Triangle
@ 3-d — Tetrahedron
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(Another) Example
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Piecewise linear strategies
oceo

Enumerating all the maximal simplexes

(Another) Example

X2

Strategy:

1
If Y= —§y1 +1 then S3;

1
If y2>—§y1+1 then Sy;
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Pick a simplex in I'(Y,,), find a linear strategy S(V,) for
, and remove the where S(Y,,) is applicable from

I(Y,). lterate until I(Y,) is empty.
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X2
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Piecewise linear strategies
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Lazy extraction

— —

Pick a simplex in I'(Y,), find a linear strategy S(Y,,) for

-

, and remove the where S(Y,,) is applicable from
['(Yy). lterate until I'(Y,) is empty.

v

X2

Strategy:

If y1 =y> then Sy;
If y1 <y then Sy;
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Scalability of strategy extraction algorithms

@ Random instance generator
derived from TSAT++
experiments

10000
I

1000
I

@ Implementation

e Python implementation
o MathSATS5 API

@ 4 algorithms

Cumulative time (sec)

Linear

Lazy

@ 1354 weakly controllable
instances admitting a linear
strategy

o
e Incremental Weakening
. — All Simplexes
o All simplexes - -~ Lay
o Lazv. Linear

Incremental Weakening

T T T
200 400 600

T T T T
800 1000 1200 1400

Number of solved instances
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Conclusions

Contributions

@ SMT-based approach for Weak Controllability in the general
case

@ Algorithms for STPU linear strategy extraction

@ Proof of non-linear strategy existence

@ Algorithms for STPU piecewise linear strategy extraction

Cost function optimization
(Considering trade-off between linearity and optimality)

@ Dynamic Controllability
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Thanks for your attention!
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