Solving Temporal Problems using SMT: Weak Controllability

Alessandro Cimatti Andrea Micheli Marco Roveri

Embedded Systems Unit, Fondazione Bruno Kessler Trento, Italy amicheli@fbk.eu AAAI 2012

25th July 2012

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
•00000	000	000	000	00	

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
00000	000	000	000	00	

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
00000	000	000	000	00	

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
•00000	000	000	000	00	

Temporal Problem View

- A_s , B_s are Controllable Time Points A_e , B_e are Uncontrollable Time Point
- \rightarrow represents Free Constraints
- ····> represents Contingent Constraints

The Controllability Problem 0●0000	Preliminaries 000	Linear strategies 000	Piecewise linear strategies	Experimental Evaluation	Conclusion 0

Schedules

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
00000					

Schedules

The Controllability Problem 0●0000	Preliminaries 000	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion 0

Schedules

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
000000					

Constraint Taxonomy

Notation

- X_c is the set of controllable time points
- X_u is the set of uncontrollable time points
- C_c is the set of contingent constraints
- C_f is the set of free constraints

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
000000					

Constraint Taxonomy

Notation

- X_c is the set of controllable time points
- X_u is the set of uncontrollable time points
- C_c is the set of contingent constraints
- C_f is the set of free constraints

Type of constraint in C_f	Problem class
No disjunctions	STPU
$(x_i - x_j) \in [I, u]$	Simple Temporal Problem with Uncertainty
Interval disjunctions	TCSPU
$(x_i - x_j) \in \bigcup_w [I_w, u_w]$	Temporal Constraint Satisfaction Problem with Uncertainty
Arbitrary disjunctions	DTPU
$\bigvee_{w} ((x_{i_w} - x_{j_w}) \in [I_w, u_w])$	Disjunctive Temporal Problem with Uncertainty

 The Controllability Problem
 Preliminaries
 Linear strategies
 Piecewise linear strategies
 Experimental Evaluation
 Conclusion

 000-00
 000
 000
 000
 000
 00
 00
 00

In this paper: Weak Controllability

Definition

A Temporal Problem with Uncertainty is **Weakly Controllable** if and only if

$$\forall \vec{X}_u . \exists \vec{X}_c . (C_c(\vec{X}_c, \vec{X}_u) \to C_f(\vec{X}_c, \vec{X}_u))$$

 The Controllability Problem
 Preliminaries
 Linear strategies
 Piecewise linear strategies
 Experimental Evaluation
 Conclusion

 000<00</td>
 000
 000
 000
 000
 00
 00
 00

In this paper: Weak Controllability

Definition

A Temporal Problem with Uncertainty is **Weakly Controllable** if and only if

$$\forall \vec{X}_u . \exists \vec{X}_c . (C_c(\vec{X}_c, \vec{X}_u) \to C_f(\vec{X}_c, \vec{X}_u))$$

Strategies

A (clairvoyant) winning strategy is a function $f: \vec{X}_u \rightarrow \vec{X}_c$ such that

$$\forall \vec{X}_u . (C_c(f(\vec{X}_u), \vec{X}_u) \to C_f(f(\vec{X}_u), \vec{X}_u))$$

The Controllability Problem	Preliminaries 000	Linear strategies 000	Piecewise linear strategies	Experimental Evaluation	Conclusion 0
Contributions	;				

1 Decision procedure for Weak Controllability

- Formalization in Linear Real Arithmetic logic
- Efficient encodings in Satisfiability Modulo Theory (SMT)
- Not discussed in this talk

The Controllability Problem	Preliminaries 000	Linear strategies 000	Piecewise linear strategies	Experimental Evaluation	Conclusion O
Contributions	;				

1 Decision procedure for Weak Controllability

- Formalization in Linear Real Arithmetic logic
- Efficient encodings in Satisfiability Modulo Theory (SMT)
- Not discussed in this talk

2 Strategy extraction algorithms for STPU

- Algorithms for linear strategy extraction
- Proof of non-linear strategy in general
- Algorithms for piecewise linear strategy extraction

2 Linear strategies

- O Piecewise linear strategies
- 4 Experimental Evaluation

1 Preliminaries

- 2 Linear strategies
- 3 Piecewise linear strategies
- 4 Experimental Evaluation

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

A formula ϕ is satisfiable if there exists a model μ such that $\mu \models \phi$.

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

A formula ϕ is satisfiable if there exists a model μ such that $\mu \models \phi$.

Example

 $\exists y, z. (\forall x.(x > 0) \lor (y \ge x)) \land (z \ge y)$ is satisfiable in the theory of real arithmetic because

 $\mu = \{(y, 6), (z, 8)\}$

is a model that satisfies ϕ .

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

A formula ϕ is satisfiable if there exists a model μ such that $\mu \models \phi$.

Example

 $\exists y, z. (\forall x. (x > 0) \lor (y \ge x)) \land (z \ge y)$ is satisfiable in the theory of real arithmetic because

 $\mu = \{ (y, 6), (z, 8) \}$

is a model that satisfies ϕ .

Theories

SMT procedures support various theories.

In this work:

- LRA (Linear Real Arithmetic)
- QF_LRA (Quantifier-Free LRA)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

A formula ϕ is satisfiable if there exists a model μ such that $\mu \models \phi$.

Example

 $\exists y, z. (\forall x. (x > 0) \lor (y \ge x)) \land (z \ge y)$ is satisfiable in the theory of real arithmetic because

 $\mu = \{(y, 6), (z, 8)\}$

is a model that satisfies ϕ .

Theories

SMT procedures support various theories.

In this work:

- LRA (Linear Real Arithmetic)
- QF_LRA (Quantifier-Free LRA)

Weak Controllability definition immediately maps in SMT (LRA)

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e-b) \in [I, u]$, we introduce an offset $y \doteq b+u-e$.

• Let \vec{Y}_u be the offsets for a given Temporal Problem with Uncertainty

The Controllability Problem	Preliminaries 0●0	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion O

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e-b) \in [l, u]$, we introduce an offset $y \doteq b + u - e$.

- Let \vec{Y}_u be the offsets for a given Temporal Problem with Uncertainty
- Let $\Gamma(\vec{Y}_u)$ be the rewritten Contingent Constraints

The Controllability Problem	Preliminaries 0●0	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion O

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e-b) \in [I, u]$, we introduce an offset $y \doteq b + u - e$.

- Let \vec{Y}_u be the offsets for a given Temporal Problem with Uncertainty
- Let $\Gamma(\vec{Y}_u)$ be the rewritten Contingent Constraints
- Let $\Psi(\vec{X}_c, \vec{Y}_u)$ the rewritten Free Constraints.

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
	000				

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e-b) \in [I, u]$, we introduce an offset $y \doteq b+u-e$.

- Let \vec{Y}_u be the offsets for a given Temporal Problem with Uncertainty
- Let $\Gamma(\vec{Y}_u)$ be the rewritten Contingent Constraints
- Let $\Psi(\vec{X}_c, \vec{Y}_u)$ the rewritten Free Constraints.
- Weak Controllability becomes $\forall \vec{Y}_u. \exists \vec{X}_c. (\Gamma(\vec{Y}_u) \rightarrow \Psi(\vec{X}_c, \vec{Y}_u))$

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
	000				

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e-b) \in [I, u]$, we introduce an offset $y \doteq b+u-e$.

- Let \vec{Y}_u be the offsets for a given Temporal Problem with Uncertainty
- Let $\Gamma(\vec{Y}_u)$ be the rewritten Contingent Constraints
- Let $\Psi(\vec{X}_c, \vec{Y}_u)$ the rewritten Free Constraints.
- Weak Controllability becomes $\forall \vec{Y}_u. \exists \vec{X}_c. (\Gamma(\vec{Y}_u) \rightarrow \Psi(\vec{X}_c, \vec{Y}_u))$
- A winning strategy is now a function $f: \vec{Y}_u \rightarrow \vec{X}_c$

Given the solution space **P**, in the space of \vec{X}_c and \vec{Y}_u , a strategy is a (possibly non-continuous) surface S, such that $P \cap S$ projected in the space of \vec{Y}_u only, contains the polyhedron $\Gamma(\vec{Y}_u)$.

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
	000				

Given the solution space **P**, in the space of \vec{X}_c and \vec{Y}_u , a strategy is a (possibly non-continuous) surface **S**, such that $P \cap S$ projected in the space of \vec{Y}_u only, contains the polyhedron $\Gamma(\vec{Y}_u)$.

Given the solution space **P**, in the space of \vec{X}_c and \vec{Y}_u , a strategy is a (possibly non-continuous) surface **S**, such that $P \cap S$ projected in the space of \vec{Y}_u only, contains the polyhedron $\Gamma(\vec{Y}_u)$.

Given the solution space **P**, in the space of \vec{X}_c and \vec{Y}_u , a strategy is a (possibly non-continuous) surface **S**, such that $P \cap S$ projected in the space of \vec{Y}_u only, contains the polyhedron $\Gamma(\vec{Y}_u)$.

Example

If *S* is a (hyper-)plane, the strategy is linear, i.e.

$$f(\vec{y}) \doteq A \cdot \vec{y} + \vec{b}$$

Preliminaries

2 Linear strategies

3 Piecewise linear strategies

4 Experimental Evaluation

The Controllability Problem	Preliminaries	Linear strategies ●00	Piecewise linear strategies	Experimental Evaluation	Conclusion 0

Linearity is not enough

Theorem

Not every weakly controllable STPU admits a linear strategy.

The Controllability Problem	Preliminaries	Linear strategies ●00	Piecewise linear strategies	Experimental Evaluation	Conclusion 0

Linearity is not enough

Theorem

Not every weakly controllable STPU admits a linear strategy.

Example

The Controllability Problem Preliminaries **Linear strategies** Piecewise linear strategies Conclusion

Encoding in *SMT* (*QF_LRA*)

The Controllability Problem Preliminaries **Linear strategies** Piecewise linear strategies coo

Encoding in SMT (QF_LRA)

(Another) Example

 $\Gamma(y_1, y_2) \doteq y_1 \ge 0 \land y_1 \ge 0 \land$ $y_1 \le 3 \land y_2 \le 1$ $f(\vec{y}) \doteq (a_1 a_2) \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + b$

 $\exists a_1, a_2, b, \forall y_1, y_2.$ $\Gamma(y_1, y_2) \rightarrow \Psi(f(a_1, a_2, b), y_1, y_2)$ The Controllability Problem Preliminaries **Linear strategies** Piecewise linear strategies coo

Encoding in *SMT* (*QF_LRA*)

(Another) Example

$$\Gamma(y_1, y_2) \doteq y_1 \ge 0 \land y_1 \ge 0 \land$$
$$y_1 \le 3 \land y_2 \le 1$$
$$f(\vec{y}) \doteq (a_1 a_2) \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + b$$

 $\exists a_1, a_2, b, \forall y_1, y_2.$ $\Gamma(y_1, y_2) \rightarrow \Psi(f(a_1, a_2, b), y_1, y_2)$

 $Enc(a_1, a_2, c) \doteq$

Encoding in SMT (QF_LRA)

(Another) Example

 $\Gamma(y_1, y_2) \doteq y_1 \ge 0 \land y_1 \ge 0 \land$ $y_1 \le 3 \land y_2 \le 1$ $f(\vec{y}) \doteq (a_1 a_2) \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + b$

 $\exists a_1, a_2, b, \forall y_1, y_2.$ $\Gamma(y_1, y_2) \rightarrow \Psi(f(a_1, a_2, b), y_1, y_2)$

 $Enc(a_1, a_2, c) \doteq \Psi(0a_1 + 0a_2 + b, 0, 0) \wedge$

Encoding in SMT (QF_LRA)

$$\Gamma(y_1, y_2) \doteq y_1 \ge 0 \land y_1 \ge 0 \land$$
$$y_1 \le 3 \land y_2 \le 1$$
$$f(\vec{y}) \doteq (a_1 a_2) \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + b$$

$$\exists a_1, a_2, b. \forall y_1, y_2. \\ \Gamma(y_1, y_2) \to \Psi(f(a_1, a_2, b), y_1, y_2)$$

$$Enc(a_1, a_2, c) \doteq \Psi(0a_1 + 0a_2 + b, 0, 0) \land \\ \Psi(0a_1 + 1a_2 + b, 0, 1) \land$$

Encoding in SMT (QF_LRA)

$$\Gamma(y_1, y_2) \doteq y_1 \ge 0 \land y_1 \ge 0 \land$$
$$y_1 \le 3 \land y_2 \le 1$$
$$f(\vec{y}) \doteq (a_1 a_2) \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + b$$

$$\exists a_1, a_2, b. \forall y_1, y_2. \Gamma(y_1, y_2) \to \Psi(f(a_1, a_2, b), y_1, y_2)$$

$$Enc(a_1, a_2, c) \doteq \Psi(0a_1 + 0a_2 + b, 0, 0) \land$$
$$\Psi(0a_1 + 1a_2 + b, 0, 1) \land$$
$$\Psi(3a_1 + 0a_2 + b, 3, 0) \land$$

Encoding in SMT (QF_LRA)

$$\Gamma(y_1, y_2) \doteq y_1 \ge 0 \land y_1 \ge 0 \land$$
$$y_1 \le 3 \land y_2 \le 1$$
$$f(\vec{y}) \doteq (a_1 a_2) \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + b$$

$$\exists a_1, a_2, b. \forall y_1, y_2. \Gamma(y_1, y_2) \to \Psi(f(a_1, a_2, b), y_1, y_2)$$

$$Enc(a_1, a_2, c) \doteq \Psi(0a_1 + 0a_2 + b, 0, 0) \land \\ \Psi(0a_1 + 1a_2 + b, 0, 1) \land \\ \Psi(3a_1 + 0a_2 + b, 3, 0) \land \\ \Psi(3a_1 + 1a_2 + b, 3, 1)$$

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
		000			

Example

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
		000			

Example

Observed uncontrollable offsets:

- Ø
- $\{y_1\}$
- {*y*₂}
- $\{y_1, y_2\}$

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
		000			

Example

Observed uncontrollable offsets:

- Ø
- {*y*₁}
- {*y*₂}
- $\{y_1, y_2\}$

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
		000			

Example

Observed uncontrollable offsets:

- Ø
- $\{y_1\}$
- {*y*₂}
- $\{y_1, y_2\}$

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
		000			

Example

Intuition

If we do not observe the i-th variable, the i-th column in the matrix is filled with 0.

2 Linear strategies

4 Experimental Evaluation

The Controllability Problem	Preliminaries 000	Linear strategies 000	Piecewise linear strategies ●00	Experimental Evaluation	Conclusion 0

Definitions

Piecewise linear strategies

f is a piecewise linear strategy if it has the form

...

$$f(\vec{y}) \doteq \text{ If } \phi_1(\vec{y}) \text{ then } A_1 \cdot \vec{y} + \vec{b}_1;$$

If $\phi_2(\vec{y}) \text{ then } A_2 \cdot \vec{y} + \vec{b}_2;$

If $\phi_n(\vec{y})$ then $A_n \cdot \vec{y} + \vec{b}_n$;

The Controllability Problem	Preliminaries 000	Linear strategies 000	Piecewise linear strategies ●00	Experimental Evaluation	Conclusion 0

Definitions

Piecewise linear strategies

f is a piecewise linear strategy if it has the form

...

$$f(\vec{y}) \doteq \text{ If } \phi_1(\vec{y}) \text{ then } A_1 \cdot \vec{y} + \vec{b}_1;$$

If $\phi_2(\vec{y}) \text{ then } A_2 \cdot \vec{y} + \vec{b}_2;$

If $\phi_n(\vec{y})$ then $A_n \cdot \vec{y} + \vec{b}_n$;

Simplexes

An *n*-simplex is an *n*-dimensional polytope which is the convex hull of its n+1 vertexes. E.g.

- 2-d \rightarrow Triangle
- 3-d → Tetrahedron

Enumerating all the maximal simplexes

The Controllability Problem Preliminaries Linear strategies 000

Enumerating all the maximal simplexes

(Another) Example

Strategy: $\label{eq:strategy} \text{If } y_2 \leq -\frac{1}{3}y_1 + 1 \text{ then } S_1;$

Enumerating all the maximal simplexes

(Another) Example

Strategy:

If
$$y_2 \le -\frac{1}{3}y_1 + 1$$
 then S_1 ;
If $y_2 > -\frac{1}{3}y_1 + 1$ then S_2 ;

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
			00●		

Idea

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
			000		

Idea

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
			000		

Idea

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
			000		

Idea

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
			000		

Idea

Pick a simplex $R(\vec{Y}_u)$ in $\Gamma(\vec{Y}_u)$, find a linear strategy $S(\vec{Y}_u)$ for $R(\vec{Y}_u)$, and remove the region where $S(\vec{Y}_u)$ is applicable from $\Gamma(\vec{Y}_u)$. Iterate until $\Gamma(\vec{Y}_u)$ is empty.

Example X_2 f y_1 y_1 y_2 y_2 X_2 f y_2 f y_2 f f $y_1 \ge y_2$ then S_1 ;

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
			000		

Idea

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
			000		

Idea

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
			000		

Idea

Pick a simplex $R(\vec{Y}_u)$ in $\Gamma(\vec{Y}_u)$, find a linear strategy $S(\vec{Y}_u)$ for $R(\vec{Y}_u)$, and remove the region where $S(\vec{Y}_u)$ is applicable from $\Gamma(\vec{Y}_u)$. Iterate until $\Gamma(\vec{Y}_u)$ is empty.

Example

Strategy:

If $y_1 \ge y_2$ then S_1 ; If $y_1 < y_2$ then S_2 ;

Preliminaries

- 2 Linear strategies
- 3 Piecewise linear strategies
- 4 Experimental Evaluation

5 Conclusion

Scalability of strategy extraction algorithms

- Random instance generator derived from TSAT++ experiments
- Implementation
 - Python implementation
 - MathSAT5 API
- 4 algorithms
 - Linear
 - Incremental Weakening
 - All simplexes
 - Lazy
- 1354 weakly controllable instances admitting a linear strategy

The Controllability Problem	Preliminaries 000	Linear strategies 000	Piecewise linear strategies	Experimental Evaluation	Conclusion 0

Extracted strategy size

1 Preliminaries

- 2 Linear strategies
- 3 Piecewise linear strategies
- 4 Experimental Evaluation

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
					•

Conclusions

Contributions

- SMT-based approach for Weak Controllability in the general case
- Algorithms for STPU linear strategy extraction
- Proof of non-linear strategy existence
- Algorithms for STPU piecewise linear strategy extraction

The Controllability Problem	Preliminaries	Linear strategies	Piecewise linear strategies	Experimental Evaluation	Conclusion
					•

Conclusions

Contributions

- SMT-based approach for Weak Controllability in the general case
- Algorithms for STPU linear strategy extraction
- Proof of non-linear strategy existence
- Algorithms for STPU piecewise linear strategy extraction

Future works

- Cost function optimization (Considering trade-off between linearity and optimality)
- Dynamic Controllability

Thanks for your attention!