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Constraint Taxonomy

Notation
Xc is the set of controllable time points
Xu is the set of uncontrollable time points
Cc is the set of contingent constraints
Cf is the set of free constraints

Type of constraint in Cf Problem class
No disjunctions STPU
(xi −xj) ∈ [l ,u] Simple Temporal Problem with Uncertainty

Interval disjunctions TCSPU
(xi −xj) ∈⋃

w [lw ,uw ] Temporal Constraint Satisfaction Problem with Uncertainty

Arbitrary disjunctions DTPU∨
w ((xiw −xjw ) ∈ [lw ,uw ]) Disjunctive Temporal Problem with Uncertainty
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In this paper: Weak Controllability

Definition
A Temporal Problem with Uncertainty is Weakly Controllable if
and only if

∀~Xu .∃~Xc .(Cc(~Xc ,~Xu)→Cf (~Xc ,~Xu))

Strategies
A (clairvoyant) winning strategy is a function f :~Xu →~Xc such that

∀~Xu .(Cc(f (~Xu),~Xu)→Cf (f (~Xu),~Xu))
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Contributions

1 Decision procedure for Weak Controllability
Formalization in Linear Real Arithmetic logic
Efficient encodings in Satisfiability Modulo Theory (SMT)
Not discussed in this talk

2 Strategy extraction algorithms for STPU
Algorithms for linear strategy extraction
Proof of non-linear strategy in general
Algorithms for piecewise linear strategy extraction
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Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order
Boolean combination of theory atoms in a given theory T .

A formula φ is satisfiable if there exists a model µ such that µ |=φ.

Example
∃y ,z . (∀x .(x > 0)∨ (y ≥ x))∧ (z ≥ y)
is satisfiable in the theory of real
arithmetic because

µ= {(y ,6), (z ,8)}

is a model that satisfies φ.

Theories
SMT procedures support various
theories.

In this work:

LRA (Linear Real Arithmetic)

QF_LRA (Quantifier-Free LRA)

Weak Controllability definition immediately maps in SMT (LRA)
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Uncontrollability Isolation
Let e ∈Xu and b ∈Xc .
For every contingent constraint (e−b) ∈ [l ,u], we introduce an offset
y .= b+u−e.

Timeb b+ l b+ue

y

Offset Rewriting

Let ~Yu be the offsets for a given Temporal Problem with Uncertainty

Let Γ(~Yu) be the rewritten Contingent Constraints

Let Ψ(~Xc ,~Yu) the rewritten Free Constraints.

Weak Controllability becomes ∀~Yu .∃~Xc .(Γ(~Yu)→Ψ(~Xc ,~Yu))

A winning strategy is now a function f : ~Yu →~Xc
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Strategies: Intuition

Given the solution space P, in the space of ~Xc and ~Yu, a strategy
is a (possibly non-continuous) surface S, such that P ∩S projected
in the space of ~Yu only, contains the polyhedron Γ(~Yu).

Example

y1
y2

x1

If S is a (hyper-)plane, the
strategy is linear, i.e.

f (~y) .=A ·~y +~b
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Linearity is not enough

Theorem
Not every weakly controllable STPU admits a linear strategy.

Example

y1

y2

X2

1
3

y1
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Encoding in SMT (QF_LRA)

(Another) Example

y1

x1

3

Γ(y1,y2)
.=y1 ≥ 0∧y1 ≥ 0∧
y1 ≤ 3∧y2 ≤ 1

f (~y) .= (a1 a2) ·
(
y1
y2

)
+b

∃a1,a2,b.∀y1,y2.

Γ(y1,y2)→Ψ(f (a1,a2,b),y1,y2)

Enc(a1,a2,c) .=

Ψ(0a1 +0a2 +b, 0, 0)∧
Ψ(0a1 +1a2 +b, 0, 1)∧
Ψ(3a1 +0a2 +b, 3, 0)∧
Ψ(3a1 +1a2 +b, 3, 1)
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Incremental Weakening

Example

y1

x1

3

Observed uncontrollable
offsets:

;
{y1}

{y2}

{y1,y2}

Intuition
If we do not observe the i-th variable, the i-th column in the
matrix is filled with 0.
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Definitions

Piecewise linear strategies
f is a piecewise linear strategy if it has the form

f (~y) .= If φ1(~y) then A1 ·~y +~b1;
If φ2(~y) then A2 ·~y +~b2;

...

If φn(~y) then An ·~y +~bn;

Simplexes
An n-simplex is an n-dimensional polytope which is the convex hull
of its n+1 vertexes. E.g.

2-d → Triangle
3-d → Tetrahedron
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Enumerating all the maximal simplexes

(Another) Example

y1

X2

3

Strategy:

If y2 ≤−1
3y1+1 then S1;

If y2 >−1
3y1+1 then S2;
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Lazy extraction

Idea
Pick a simplex R(~Yu) in Γ(~Yu), find a linear strategy S(~Yu) for
R(~Yu), and remove the region where S(~Yu) is applicable from
Γ(~Yu). Iterate until Γ(~Yu) is empty.

Example

y1 y2

X2

13

Strategy:

If y1 ≥ y2 then S1;
If y1 < y2 then S2;
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Scalability of strategy extraction algorithms

Random instance generator
derived from TSAT++
experiments

Implementation
Python implementation
MathSAT5 API

4 algorithms
Linear
Incremental Weakening
All simplexes
Lazy
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Extracted strategy size
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Conclusions

Contributions
SMT-based approach for Weak Controllability in the general
case
Algorithms for STPU linear strategy extraction
Proof of non-linear strategy existence
Algorithms for STPU piecewise linear strategy extraction

Future works
Cost function optimization
(Considering trade-off between linearity and optimality)
Dynamic Controllability
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Thanks

Thanks for your attention!
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