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Temporal Planning (With Temporal Uncertainty)

Our setting: Temporal Planning in presence of Temporal Uncertainty, i.e.
when some activities cannot be temporally controlled by the plan executor.
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Timeline Planning

Underlying Idea:
Generate a sequence of activities for a set of components according to a
Domain Theory that fulfill a set of (temporal) constraints.

Planners
HSTS: Muscettola [1993]
Europa: Frank and Jónsson [2003]
APSI: Cesta et al. [2009]
CNT: Verfaillie et al. [2010]

Applications:
Timeline-based planning is used in many practical applications where
temporal constraints are predominant (e.g. Activity Planning & Scheduling
for Space Operations).
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Contributions

1 Formalization of Timeline Planning with and without Temporal
Uncertainty

I Abstract syntax
I Problem definition
I Formal semantics

2 Bounded-horizon, strong controllability problem sound and complete
encoding in first-order logic.

I Directly derived from formal semantics
I APSI-derived concrete syntax
I Made practical by SMT(LRA)
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Formalization of Timelines (without Temporal Uncertainty)
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Timelines with Temporal Uncertainty
Temporal Uncertainty Annotation
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Strong Controllability Bounded-Horizon Encoding

Idea: we assume all durations positive and fix (an upper bound of) the
maximal number of value changes for each generator withing a given
horizon.

Example
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DURING
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With horizon H =̇ 240 we have
at most 24 values for the
Satellite
at most 80 values for the Device

We can “unroll” the problem and we encode it in (quantified) First
Order Logic modulo the Linear Rational Arithmetic.
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Experiments
SMT-Based Implementation

Implemented on top of the
NuSMV model checker
Fourier-Motzkin Quantifier
Elimination to get rid of
quantifiers
MathSAT5 to solve the SMT
problems

Experimental Setup
Three Domains with
different problems
Monolithic vs Incremental
implementation
TO is 1800s, MO is 4Gb

Type Problem Monolithic Incremental
Time(s) Memory(Mb) Time(s) Memory(Mb)

Sat
Satellite 6.87 111.5 1.88 31.9

Machinery1 TO TO 360.15 611.5
Meeting MO MO 182.52 1897.0

Unsat
Satellite 7.17 126.2 171.25 147.6

Machinery2 104.86 253.7 113.53 284.4
Meeting 23.12 630.8 105.17 776.9
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Conclusions

Summary
Formal description of Timeline Planning with and without Temporal
Uncertainty
Strong Controllability bounded-horizon Planning Problem definition
and encoding
SMT-based prototype of the encoding

Future works
Dynamic and Weak Controllability Planning Problems
Formalization of resources
Optimizing Planning: find a solution that minimizes a given cost
function
Competitive implementation
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Thanks

Please, come to the poster session for details, explanations and discussion!

Thanks for your attention!
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problems using constraint networks on timelines. Knowledge Eng. Review, 25(3):319–336,
2010.



Backup Slides

Backup Slides

12/9



Strong Controllability Planning is not Worst Case

One may think that Strong Controllability can be solved by taking the
longest or the shortest duration for an activity.

Counterexample
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Schedules and Strategies Examples
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Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean
combination of theory atoms in a given theory T .

Given a formula φ, φ is satisfiable if there exists a model µ such that
µ |= φ.

Example
φ =̇ (∀x .(x > 0) ∨ (y ≥
x)) ∧ (z ≥ y)
is satisfiable in the theory of
linear real arithmetic because

µ = {(y , 6), (z , 8)}

is a model that satisfies φ.

Theories
Various theories can be used.

In this work:

LRA (Linear Real
Arithmetic)

QF LRA (Quantifier-Free
Linear Real Arithmetic)
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Quantifier Elimination
Quantifier Elimination Definition
A theory T has quantifier elimination if for every formula Φ, there exists
another formula ΦQF without quantifiers which is equivalent to it (modulo
the theory T )

Quantifier Elimination for LRA
LRA theory admits quantifier elimination, but elimination algorithms are
very costly (doubly exponential in the size of the original formula).
(∃x .(x ≥ 2y + z) ∧ (x ≤ 3z + 5))↔ (2y − 2z − 5 ≤ 0)

Different techniques exists:
Fourier-Motzkin
Loos-Weisspfenning
...
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Quantifier Elimination for LRA

Various techniques
Fourier-Motzkin
Loos-Weisspfenning
...

Fourier-Motzkin Elimination
Procedure that eliminates a variable from a conjunction of linear
inequalities.
It can be applied to a general LRA formula by computing the DNF
and applying the technique to each disjunct.
The complexity is doubly exponential: in the number of variable to
quantify and in the size of the DNF formula.

17/9



Fourier-Motzkin Elimination
Let ψ=̇∃xr .

∧N
i=0

∑M
k=1 aikxk ≤ bi be the problem we want to solve, where

xr is the variable to eliminate.
We have three kinds of inequalities in a system of linear inequalities:

xr ≥ Ah, where Ah=̇bi −
∑ri−1

k=1 aikxk , for h ∈ [1,HA]

xr ≤ Bh, where Bh=̇bi −
∑ri−1

k=1 aikxk , for h ∈ [1,HB]

Inequalities in which xr has no role. Let φ be the conjunction of those
inequalities.

The system is equivalent to (maxHA
h=1(Ah) ≤ xr ≤ minHb

h=1(Bh)) ∧ φ and to
(maxHA

h=1(Ah) ≤ minHb
h=1(Bh)) ∧ φ

max and min are not linear functions, but we can mimic the formula by
using a quadratic number of linear inequalities:

ψ ⇔ (
HA∧
i=0

HB∧
j=0

Ai ≤ Bj) ∧ φ

18/9



Fourier-Motzkin Example
Fourier Motzkin Example: Step 1
Let ψ=̇∀z .((z ≥ 4)→ ((x < z) ∧ (y < z))).
We convert all the quantifiers in existentials and we compute the DNF of
the quantified part of the formula.
ψ ⇔ ¬∃z .((z ≥ 4) ∧ ¬((x < z) ∧ (y < z)))
ψ ⇔ ¬∃z .((z ≥ 4) ∧ (¬(x < z) ∨ ¬(y < z)))
ψ ⇔ ¬∃z .(((z ≥ 4) ∧ ¬(x < z)) ∨ ((z ≥ 4) ∧ ¬(y < z)))

Fourier Motzkin Example: Step 2
For every disjunct, we apply the Fourier-Motzkin Elimination:
((z ≥ 4) ∧ (z ≤ x))⇔ (4 ≤ x)
((z ≥ 4) ∧ (z ≤ y))⇔ (4 ≤ y)

Then, we rebuild the formula:
ψ ⇔ ¬((4 ≤ x) ∨ (4 ≤ y))
ψ ⇔ ((x < 4) ∧ (y < 4))

19/9



Temporal Uncertainty Characterization

Temporal Uncertainty can be seen as a game between an Executor and
the adversarial Nature.

Rules
The Executor schedules a set of Controllable Time Points (Xc)

The Executor must fulfill a set of temporal constraints called Free
Constraints (Cf )

The Nature tries to prevent the success of the executor scheduling a
set of Uncontrollable Time Points (Xu)
The Nature must fulfill a set of temporal constraints called
Contingent Constraints (Cc)
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Controllability Levels

Strong Controllability (No
observation)
Find a fixed schedule for controllable time
points

Dynamic Controllability (Past
observation)
Find a strategy that depends on past
observations only, for scheduling
controllable time points

Weak Controllability (Full
observation)
Find a “clairvoyant” strategy for
scheduling controllable time points

Fixed Schedule
start(A) at 0
start(B) at 11

Dynamic Strategy
start(A) at 0
start(B) at C

Clairvoyant Strategy
start(A) at 0
start(B) at C − 1
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