Alessandro Cimatti Andrea Micheli Marco Roveri

Embedded Systems Unit Fondazione Bruno Kessler, Trento, Italy amicheli@fbk.eu

18th July 2013

AAAI 2013

Outline

2 Timelines with Temporal Uncertainty

Strong Controllability Bounded-Horizon Encoding

Outline

Timelines with Temporal Uncertainty

Strong Controllability Bounded-Horizon Encoding

4 Conclusion

	Temporal Uncertainty					
	No	Yes				
Deciding Activities (Temporal Planning)						
Fixed Activities						
(Scheduling)						

	Temporal Uncertainty					
	No	Yes				
Deciding Activities (Temporal Planning)	PDDL 2.1, Timelines					
Fixed Activities (Scheduling)						

	Temporal Uncertainty					
	No	Yes				
Deciding Activities	PDDL 2.1, Timelines	Timelines with				
(Temporal Planning)		Temporal Uncertainty				
Fixed Activities (Scheduling)						

Timeline Planning

Underlying Idea:

Generate a sequence of **activities** for a set of components according to a *Domain Theory* that fulfill a set of (temporal) constraints.

Timeline Planning

Underlying Idea:

Generate a sequence of **activities** for a set of components according to a *Domain Theory* that fulfill a set of (temporal) constraints.

Planners

- HSTS: Muscettola [1993]
- Europa: Frank and Jónsson [2003]
- APSI: Cesta et al. [2009]
- CNT: Verfaillie et al. [2010]

Timeline Planning

Underlying Idea:

Generate a sequence of **activities** for a set of components according to a *Domain Theory* that fulfill a set of (temporal) constraints.

Applications:

Timeline-based planning is used in many practical applications where temporal constraints are predominant (e.g. Activity Planning & Scheduling for Space Operations).

Contributions

Formalization of Timeline Planning with and without Temporal Uncertainty

- Abstract syntax
- Problem definition
- Formal semantics

Contributions

Formalization of Timeline Planning with and without Temporal Uncertainty

- Abstract syntax
- Problem definition
- Formal semantics
- Bounded-horizon, strong controllability problem sound and complete encoding in first-order logic.
 - Directly derived from formal semantics
 - APSI-derived concrete syntax
 - Made practical by $SMT(\mathcal{LRA})$

Outline

2 Timelines with Temporal Uncertainty

Strong Controllability Bounded-Horizon Encoding

4 Conclusion

Formalization

• **Generators** describe component behaviors

- **Generators** describe component behaviors
- **Synchronizations** describe inter-component requirements via *Quantified Allen Relations*

- Generators describe component behaviors
- **Synchronizations** describe inter-component requirements via *Quantified Allen Relations*
- Facts constrain the desired executions (e.g DEVICE.SEND2 ∈ [30,∞))

- Generators describe component behaviors
- **Synchronizations** describe inter-component requirements via *Quantified Allen Relations*
- Facts constrain the desired executions (e.g DEVICE.SEND2 ∈ [30,∞))

Evolution	ו						- 1
Satellite	Hidden	Vi	sible	Hidden		Visible	
Device	Idle	Send1		Idle		Send2	
0) 1	0 1	5 2	1	33 3	35 4	$\overrightarrow{0}^{t}$

- Generators describe component behaviors
- **Synchronizations** describe inter-component requirements via *Quantified Allen Relations*
- Facts constrain the desired executions (e.g DEVICE.SEND2 ∈ [30,∞))

Evolution	า					
Satellite	Hidden	V	isible	Hidden		Visible
Device	Idle	Send1		ldle		Send2
() 10) 1	5 2	1	33 3	35 40 t

- Generators describe component behaviors
- **Synchronizations** describe inter-component requirements via *Quantified Allen Relations*
- Facts constrain the desired executions (e.g DEVICE.SEND2 ∈ [30,∞))

Evolution	า					
Satellite	Hidden	Vi	sible	Hidden	Visible	
Device	Idle		Send1	Idle	Send2	
() 1	1	16 2	21	33 35	40 t 5/9

- **Generators** describe component behaviors
- **Synchronizations** describe inter-component requirements via *Quantified Allen Relations*
- Facts constrain the desired executions (e.g DEVICE.SEND2 ∈ [30,∞))

Temporal Uncertainty Annotation

- We annotate the domain values with controllable or uncontrollable flags for both starting and ending time.
- We *annotate* the synchronizations with **contingent** or **free** flag.

Evolution

Temporal Uncertainty Annotation

- We annotate the domain values with controllable or uncontrollable flags for both starting and ending time.
- We *annotate* the synchronizations with **contingent** or **free** flag.

Temporal Uncertainty Annotation

- We annotate the domain values with controllable or uncontrollable flags for both starting and ending time.
- We *annotate* the synchronizations with **contingent** or **free** flag.

Outline

Timelines with Temporal Uncertainty

Strong Controllability Bounded-Horizon Encoding

4 Conclusion

Strong Controllability Bounded-Horizon Encoding

Idea: we assume all durations positive and fix (an upper bound of) the *maximal* number of value changes for each generator withing a given horizon.

Strong Controllability Bounded-Horizon Encoding

Idea: we assume all durations positive and fix (an upper bound of) the *maximal* number of value changes for each generator withing a given horizon.

Example

With horizon $H \doteq 240$ we have

- at most 24 values for the Satellite
- at most 80 values for the Device

Strong Controllability Bounded-Horizon Encoding

Idea: we assume all durations positive and fix (an upper bound of) the *maximal* number of value changes for each generator withing a given horizon.

We can **"unroll"** the problem and we encode it in (**quantified**) First Order Logic modulo the Linear Rational Arithmetic.

Experiments

SMT-Based Implementation

- Implemented on top of the NuSMV model checker
- Fourier-Motzkin Quantifier Elimination to get rid of quantifiers
- MathSAT5 to solve the SMT problems

Experimental Setup

- Three Domains with different problems
- Monolithic vs Incremental implementation
- TO is 1800s, MO is 4Gb

Туре	Problem	Mo	onolithic	Incremental		
		Time(s) Memory(Mb)		Time(s)	Memory(Mb)	
	Satellite	6.87	111.5	1.88	31.9	
Sat	Machinery1	ТО	то	360.15	611.5	
	Meeting	MO	MO	182.52	1897.0	
	Satellite	7.17	126.2	171.25	147.6	
Unsat	Machinery2	104.86	253.7	113.53	284.4	
	Meeting	23.12	630.8	105.17	776.9	

Outline

Introduction

2) Timelines with Temporal Uncertainty

3 Strong Controllability Bounded-Horizon Encoding

Conclusions

Summary

- Formal description of Timeline Planning with and without Temporal Uncertainty
- Strong Controllability bounded-horizon Planning Problem definition and encoding
- SMT-based prototype of the encoding

Conclusions

Summary

- Formal description of Timeline Planning with and without Temporal Uncertainty
- Strong Controllability bounded-horizon Planning Problem definition and encoding
- SMT-based prototype of the encoding

Future works

- Dynamic and Weak Controllability Planning Problems
- Formalization of resources
- Optimizing Planning: find a solution that minimizes a given cost function
- Competitive implementation

Thanks

Please, come to the poster session for details, explanations and discussion!

Thanks for your attention!

Bibliography

- A. Cesta, G. Cortellessa, S. Fratini, A. Oddi, and R. Rasconi. The APSI Framework: a Planning and Scheduling Software Development Environment. In *Working Notes of the ICAPS-09 Application Showcase Program*, Thessaloniki, Greece, September 2009.
- J. Frank and A.K. Jónsson. Constraint-based Attribute and Interval Planning. *Constraints*, 8(4): 339–364, oct 2003. ISSN 1383-7133 (Print) 1572-9354 (Online).
- N. Muscettola. Hsts: Integrating planning and scheduling. Technical report, DTIC Document, 1993.
- Gérard Verfaillie, Cédric Pralet, and Michel Lemaître. How to model planning and scheduling problems using constraint networks on timelines. *Knowledge Eng. Review*, 25(3):319–336, 2010.

Backup Slides

Backup Slides

Schedules and Strategies Examples

Schedules and Strategies Examples

Schedules and Strategies Examples

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

Given a formula ϕ , ϕ is satisfiable if there exists a model μ such that $\mu \models \phi$.

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

Given a formula ϕ , ϕ is satisfiable if there exists a model μ such that $\mu \models \phi$.

Example

$$\begin{split} \phi &\doteq (\forall x.(x > 0) \lor (y \ge x)) \land (z \ge y) \\ \text{is satisfiable in the theory of} \\ \text{linear real arithmetic because} \end{split}$$

$$\mu = \{(y, 6), (z, 8)\}$$

is a model that satisfies ϕ .

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

Given a formula ϕ , ϕ is satisfiable if there exists a model μ such that $\mu \models \phi$.

Example

$$\begin{split} \phi &\doteq (\forall x.(x > 0) \lor (y \ge x)) \land (z \ge y) \\ \text{is satisfiable in the theory of linear real arithmetic because} \end{split}$$

 $\mu = \{(y, 6), (z, 8)\}$

is a model that satisfies ϕ .

Theories

Various theories can be used.

In this work:

- *LRA* (Linear Real Arithmetic)
- *QF_LRA* (*Quantifier-Free Linear Real Arithmetic*)

Quantifier Elimination

Quantifier Elimination Definition

A theory T has quantifier elimination if for every formula Φ , there exists another formula Φ_{QF} without quantifiers which is *equivalent* to it (modulo the theory T)

Quantifier Elimination

Quantifier Elimination Definition

A theory T has quantifier elimination if for every formula Φ , there exists another formula Φ_{QF} without quantifiers which is *equivalent* to it (modulo the theory T)

Quantifier Elimination for \mathcal{LRA}

 \mathcal{LRA} theory admits quantifier elimination, but elimination algorithms are very costly (doubly exponential in the size of the original formula).

$$(\exists x.(x \geq 2y+z) \land (x \leq 3z+5)) \leftrightarrow (2y-2z-5 \leq 0)$$

Different techniques exists:

- Fourier-Motzkin
- Loos-Weisspfenning

Quantifier Elimination for \mathcal{LRA}

Various techniques

- Fourier-Motzkin
- Loos-Weisspfenning
- ...

Fourier-Motzkin Elimination

- Procedure that eliminates a variable from a conjunction of linear inequalities.
- It can be applied to a general \mathcal{LRA} formula by computing the DNF and applying the technique to each disjunct.
- The complexity is doubly exponential: in the number of variable to quantify and in the size of the DNF formula.

Fourier-Motzkin Elimination

Let $\psi \doteq \exists x_r . \bigwedge_{i=0}^N \sum_{k=1}^M a_{ik} x_k \leq b_i$ be the problem we want to solve, where x_r is the variable to eliminate.

We have three kinds of inequalities in a system of linear inequalities:

•
$$x_r \ge A_h$$
, where $A_h \doteq b_i - \sum_{k=1}^{r_i-1} a_{ik} x_k$, for $h \in [1, H_A]$

•
$$x_r \leq B_h$$
, where $B_h \doteq b_i - \sum_{k=1}^{r_i-1} a_{ik} x_k$, for $h \in [1, H_B]$

Inequalities in which x_r has no role. Let φ be the conjunction of those inequalities.

The system is **equivalent** to $(max_{h=1}^{H_A}(A_h) \le x_r \le min_{h=1}^{H_b}(B_h)) \land \phi$ and to $(max_{h=1}^{H_A}(A_h) \le min_{h=1}^{H_b}(B_h)) \land \phi$

max and *min* are not linear functions, but we can mimic the formula by using a quadratic number of linear inequalities:

$$\psi \Leftrightarrow (\bigwedge_{i=0}^{H_A} \bigwedge_{j=0}^{H_B} A_i \leq B_j) \land \phi$$

Fourier-Motzkin Example

Fourier Motzkin Example: Step 1

Let
$$\psi \doteq \forall z.((z \ge 4) \rightarrow ((x < z) \land (y < z))).$$

We convert all the quantifiers in existentials and we compute the DNF of the quantified part of the formula.

$$\begin{split} \psi &\Leftrightarrow \neg \exists z.((z \ge 4) \land \neg ((x < z) \land (y < z))) \\ \psi &\Leftrightarrow \neg \exists z.((z \ge 4) \land (\neg (x < z) \lor \neg (y < z))) \\ \psi &\Leftrightarrow \neg \exists z.(((z \ge 4) \land \neg (x < z)) \lor ((z \ge 4) \land \neg (y < z))) \end{split}$$

Fourier Motzkin Example: Step 2

For every disjunct, we apply the Fourier-Motzkin Elimination: $((z \ge 4) \land (z \le x)) \Leftrightarrow (4 \le x)$ $((z \ge 4) \land (z \le y)) \Leftrightarrow (4 \le y)$

Then, we rebuild the formula: $\psi \Leftrightarrow \neg((4 \le x) \lor (4 \le y))$ $\psi \Leftrightarrow ((x < 4) \land (y < 4))$

Temporal Uncertainty can be seen as a **game** between an *Executor* and the adversarial *Nature*.

Temporal Uncertainty can be seen as a **game** between an *Executor* and the adversarial *Nature*.

Rules

• The *Executor* schedules a set of **Controllable Time Points** (X_c)

Temporal Uncertainty can be seen as a **game** between an *Executor* and the adversarial *Nature*.

Rules

- The Executor schedules a set of Controllable Time Points (X_c)
- The *Executor* must fulfill a set of temporal constraints called **Free Constraints** (*C_f*)

Temporal Uncertainty can be seen as a **game** between an *Executor* and the adversarial *Nature*.

Rules

- The Executor schedules a set of Controllable Time Points (X_c)
- The *Executor* must fulfill a set of temporal constraints called **Free Constraints** (*C_f*)
- The *Nature* tries to prevent the success of the executor scheduling a set of **Uncontrollable Time Points** (*X_u*)

Temporal Uncertainty can be seen as a **game** between an *Executor* and the adversarial *Nature*.

Rules

- The Executor schedules a set of Controllable Time Points (X_c)
- The *Executor* must fulfill a set of temporal constraints called **Free Constraints** (*C_f*)
- The *Nature* tries to prevent the success of the executor scheduling a set of **Uncontrollable Time Points** (*X_u*)
- The *Nature* must fulfill a set of temporal constraints called **Contingent Constraints** (*C_c*)

Temporal Problems (with Temporal Uncertainty)

Temporal Problems (with Temporal Uncertainty)

Temporal Problems with Uncertainty

• Strong Controllability (No observation)

Find a **fixed schedule** for controllable time points

Fixed Schedule

- start(A) at 0
- *start*(*B*) at 11

• Strong Controllability (No observation)

Find a **fixed schedule** for controllable time points

Dynamic Controllability (Past observation)
 Find a strategy that depends on past observations only, for scheduling controllable time points

- start(A) at 0
- *start*(*B*) at 11

Dynamic Strategy

- start(A) at 0
- *start*(*B*) at *C*

• Strong Controllability (No observation)

Find a **fixed schedule** for controllable time points

- Dynamic Controllability (Past observation)
 Find a strategy that depends on past observations only, for scheduling controllable time points
- Weak Controllability (Full observation)
 Find a "clairvoyant" strategy for scheduling controllable time points

Fixed Schedule

- start(A) at 0
- start(B) at 11

Dynamic Strategy

- start(A) at 0
- start(B) at C

Clairvoyant Strategy
start(A) at 0
start(B) at C - 1