Alessandro Cimatti **Andrea Micheli** Marco Roveri

Embedded Systems Unit Fondazione Bruno Kessler, Trento, Italy amicheli@fbk.eu

18th July 2013

AAAI 2013

Outline

[Timelines with Temporal Uncertainty](#page-14-0)

[Strong Controllability Bounded-Horizon Encoding](#page-26-0)

Outline

[Timelines with Temporal Uncertainty](#page-14-0)

3 [Strong Controllability Bounded-Horizon Encoding](#page-26-0)

Timeline Planning

Underlying Idea:

Generate a sequence of **activities** for a set of components according to a Domain Theory that fulfill a set of (temporal) constraints.

Timeline Planning

Underlying Idea:

Generate a sequence of **activities** for a set of components according to a Domain Theory that fulfill a set of (temporal) constraints.

Planners

- HSTS: Muscettola [1993]
- Europa: Frank and Jónsson [2003]
- APSI: Cesta et al. [2009]
- CNT: Verfaillie et al. [2010]

Timeline Planning

Underlying Idea:

Generate a sequence of **activities** for a set of components according to a Domain Theory that fulfill a set of (temporal) constraints.

Applications:

Timeline-based planning is used in many practical applications where temporal constraints are predominant (e.g. Activity Planning & Scheduling for Space Operations).

Contributions

1 Formalization of Timeline Planning with and without Temporal **Uncertainty**

- \blacktriangleright Abstract syntax
- \blacktriangleright Problem definition
- \blacktriangleright Formal semantics

Contributions

1 Formalization of Timeline Planning with and without Temporal **Uncertainty**

- \blacktriangleright Abstract syntax
- \blacktriangleright Problem definition
- \blacktriangleright Formal semantics
- ² Bounded-horizon, strong controllability problem sound and complete encoding in first-order logic.
	- \triangleright Directly derived from formal semantics
	- \blacktriangleright APSI-derived concrete syntax
	- \blacktriangleright Made practical by SMT(\mathcal{LRA})

Outline

[Timelines with Temporal Uncertainty](#page-14-0)

[Strong Controllability Bounded-Horizon Encoding](#page-26-0)

Formalization

Generators describe component behaviors

- **Generators** describe component behaviors
- **Synchronizations** describe inter-component requirements via Quantified Allen Relations

- **Generators** describe component behaviors
- **Synchronizations** describe inter-component requirements via Quantified Allen Relations
- **Facts** constrain the desired executions (e.g DEVICE.SEND2 \in [30, ∞))

- **Generators** describe component behaviors
- **Synchronizations** describe inter-component requirements via Quantified Allen Relations
- **Facts** constrain the desired executions (e.g DEVICE.SEND2 \in [30, ∞))

- **Generators** describe component behaviors
- **Synchronizations** describe inter-component requirements via Quantified Allen Relations
- **Facts** constrain the desired executions (e.g DEVICE.SEND2 \in [30, ∞))

- **Generators** describe component behaviors
- **Synchronizations** describe inter-component requirements via Quantified Allen Relations
- **Facts** constrain the desired executions (e.g DEVICE.SEND2 \in [30, ∞))

- **Generators** describe component behaviors
- **Synchronizations** describe inter-component requirements via Quantified Allen Relations
- **Facts** constrain the desired executions (e.g DEVICE.SEND2 \in [30, ∞))

Temporal Uncertainty Annotation

- We *annotate* the domain values with **controllable** or **uncontrollable** flags for both starting and ending time.
- We annotate the synchronizations with **contingent** or **free** flag.

Evolution

Temporal Uncertainty Annotation

- We annotate the domain values with **controllable** or **uncontrollable** flags for both starting and ending time.
- We annotate the synchronizations with **contingent** or **free** flag.

Temporal Uncertainty Annotation

- We annotate the domain values with **controllable** or **uncontrollable** flags for both starting and ending time.
- We annotate the synchronizations with **contingent** or **free** flag.

Outline

[Timelines with Temporal Uncertainty](#page-14-0)

3 [Strong Controllability Bounded-Horizon Encoding](#page-26-0)

[Conclusion](#page-31-0)

Strong Controllability Bounded-Horizon Encoding

Idea: we assume all durations positive and fix (an upper bound of) the maximal number of value changes for each generator withing a given horizon.

Strong Controllability Bounded-Horizon Encoding

Idea: we assume all durations positive and fix (an upper bound of) the maximal number of value changes for each generator withing a given horizon.

Example

With horizon $H = 240$ we have

- **a** at most 24 values for the **Satellite**
- at most 80 values for the Device

Strong Controllability Bounded-Horizon Encoding

Idea: we assume all durations positive and fix (an upper bound of) the maximal number of value changes for each generator withing a given horizon.

We can **"unroll"** the problem and we encode it in (**quantified**) First Order Logic modulo the Linear Rational Arithmetic.

Experiments

SMT-Based Implementation

- Implemented on top of the NuSMV model checker
- Fourier-Motzkin Quantifier Elimination to get rid of quantifiers
- MathSAT5 to solve the SMT problems

Experimental Setup

- **Three Domains with** different problems
- Monolithic vs Incremental implementation
- TO is 1800s, MO is 4Gb

Outline

[Timelines with Temporal Uncertainty](#page-14-0)

3 [Strong Controllability Bounded-Horizon Encoding](#page-26-0)

Conclusions

Summary

- Formal description of Timeline Planning with and without Temporal **Uncertainty**
- Strong Controllability bounded-horizon Planning Problem definition and encoding
- SMT-based prototype of the encoding

Conclusions

Summary

- Formal description of Timeline Planning with and without Temporal **Uncertainty**
- Strong Controllability bounded-horizon Planning Problem definition and encoding
- SMT-based prototype of the encoding

Future works

- Dynamic and Weak Controllability Planning Problems
- **•** Formalization of resources
- Optimizing Planning: find a solution that minimizes a given cost function
- **Competitive implementation**

Thanks

Please, come to the poster session for details, explanations and discussion!

Thanks for your attention!

Bibliography

- A. Cesta, G. Cortellessa, S. Fratini, A. Oddi, and R. Rasconi. The APSI Framework: a Planning and Scheduling Software Development Environment. In Working Notes of the ICAPS-09 Application Showcase Program, Thessaloniki, Greece, September 2009.
- J. Frank and A.K. Jónsson. Constraint-based Attribute and Interval Planning. Constraints, 8(4): 339–364, oct 2003. ISSN 1383-7133 (Print) 1572-9354 (Online).
- N. Muscettola. Hsts: Integrating planning and scheduling. Technical report, DTIC Document, 1993.
- Gérard Verfaillie, Cédric Pralet, and Michel Lemaître. How to model planning and scheduling problems using constraint networks on timelines. *Knowledge Eng. Review*, 25(3):319–336, 2010.

Backup Slides

Backup Slides

Schedules and Strategies Examples

Schedules and Strategies Examples

Schedules and Strategies Examples

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

Given a formula *φ*, *φ* is satisfiable if there exists a model *µ* such that $\mu \models \phi$.

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

Given a formula *φ*, *φ* is satisfiable if there exists a model *µ* such that $\mu \models \phi$.

Example

 $\phi = (\forall x.(x > 0) \lor (y >$ $(x)) \wedge (z > y)$ is satisfiable in the theory of linear real arithmetic because

$$
\mu = \{(y,6), (z,8)\}
$$

is a model that satisfies *φ*.

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

Given a formula *φ*, *φ* is satisfiable if there exists a model *µ* such that $\mu \models \phi$.

Example

 $\phi = (\forall x.(x > 0) \lor (y >$ $(x)) \wedge (z > y)$ is satisfiable in the theory of linear real arithmetic because

 $\mu = \{ (\gamma, 6), (z, 8) \}$

is a model that satisfies *φ*.

Theories

Various theories can be used.

In this work:

- LRA (Linear Real Arithmetic)
- **•** Q.F_C.R.A (Quantifier-Free Linear Real Arithmetic)

Quantifier Elimination

Quantifier Elimination Definition

A theory T has quantifier elimination if for every formula Φ , there exists another formula Φ_{OF} without quantifiers which is *equivalent* to it (modulo the theory T)

Quantifier Elimination

Quantifier Elimination Definition

A theory T has quantifier elimination if for every formula Φ , there exists another formula Φ_{OF} without quantifiers which is equivalent to it (modulo the theory T)

Quantifier Elimination for \mathcal{LRA}

 \mathcal{LRA} theory admits quantifier elimination, but elimination algorithms are very costly (doubly exponential in the size of the original formula).

$$
(\exists x.(x \geq 2y + z) \land (x \leq 3z + 5)) \leftrightarrow (2y - 2z - 5 \leq 0)
$$

Different techniques exists:

- **•** Fourier-Motzkin
- Loos-Weisspfenning

Quantifier Elimination for \mathcal{LRA}

Various techniques

- **•** Fourier-Motzkin
- **Loos-Weisspfenning**
- \bullet ...

Fourier-Motzkin Elimination

- Procedure that eliminates a variable from a **conjunction** of linear inequalities.
- It can be applied to a general \mathcal{LRA} formula by computing the DNF and applying the technique to each disjunct.
- The complexity is doubly exponential: in the number of variable to quantify and in the size of the DNF formula.

Fourier-Motzkin Elimination

Let $\psi \dot = \exists x_r.$ $\bigwedge_{i=0}^N\sum_{k=1}^M a_{ik}x_k \leq b_i$ be the problem we want to solve, where x_r is the variable to eliminate.

We have three kinds of inequalities in a system of linear inequalities:

•
$$
x_r \ge A_h
$$
, where $A_h = b_i - \sum_{k=1}^{r_i-1} a_{ik}x_k$, for $h \in [1, H_A]$

- $x_r \leq B_h$, where $B_h = b_i \sum_{k=1}^{r_i-1} a_{ik}x_k$, for $h \in [1, H_B]$
- **Inequalities in which** x_r **has no role.** Let ϕ be the conjunction of those inequalities.

The system is **equivalent** to $(max_{h=1}^{H_A}(A_h) \leq x_r \leq min_{h=1}^{H_b}(B_h)) \wedge \phi$ and to $(\textit{max}_{h=1}^{\textit{H}_{\textit{A}}} (A_h) \leq \textit{min}_{h=1}^{\textit{H}_{\textit{b}}}(B_h)) \land \phi$

max and min are not linear functions, but we can mimic the formula by using a quadratic number of linear inequalities:

$$
\psi \Leftrightarrow (\bigwedge_{i=0}^{H_A} \bigwedge_{j=0}^{H_B} A_i \leq B_j) \wedge \phi
$$

Fourier-Motzkin Example

Fourier Motzkin Example: Step 1

Let
$$
\psi \doteq \forall z . ((z \geq 4) \rightarrow ((x < z) \land (y < z))).
$$

We convert all the quantifiers in existentials and we compute the DNF of the quantified part of the formula.

$$
\psi \Leftrightarrow \neg \exists z . ((z \ge 4) \land \neg ((x < z) \land (y < z)))
$$

\n
$$
\psi \Leftrightarrow \neg \exists z . ((z \ge 4) \land (\neg (x < z) \lor \neg (y < z)))
$$

\n
$$
\psi \Leftrightarrow \neg \exists z . (((z \ge 4) \land \neg (x < z)) \lor ((z \ge 4) \land \neg (y < z)))
$$

Fourier Motzkin Example: Step 2

For every disjunct, we apply the Fourier-Motzkin Elimination: $((z > 4) \wedge (z < x)) \Leftrightarrow (4 < x)$ $((z > 4) \wedge (z < y)) \Leftrightarrow (4 < y)$

Then, we rebuild the formula: $\psi \Leftrightarrow \neg ((4 \leq x) \vee (4 \leq y))$ $\psi \Leftrightarrow ((x < 4) \wedge (y < 4))$

Temporal Uncertainty can be seen as a **game** between an Executor and the adversarial Nature.

Temporal Uncertainty can be seen as a **game** between an Executor and the adversarial Nature.

Rules

• The *Executor* schedules a set of **Controllable Time Points** (X_c)

Temporal Uncertainty can be seen as a **game** between an Executor and the adversarial Nature.

Rules

- The *Executor* schedules a set of **Controllable Time Points** (X_c)
- The Executor must fulfill a set of temporal constraints called **Free Constraints (Cf)**

Temporal Uncertainty can be seen as a **game** between an Executor and the adversarial Nature.

Rules

- The *Executor* schedules a set of **Controllable Time Points** (X_c)
- The Executor must fulfill a set of temporal constraints called **Free Constraints (**C^f **)**
- The *Nature* tries to prevent the success of the executor scheduling a set of **Uncontrollable Time Points (**Xu**)**

Temporal Uncertainty can be seen as a **game** between an Executor and the adversarial Nature.

Rules

- The *Executor* schedules a set of **Controllable Time Points** (X_c)
- The Executor must fulfill a set of temporal constraints called **Free Constraints (**C^f **)**
- The *Nature* tries to prevent the success of the executor scheduling a set of **Uncontrollable Time Points (**Xu**)**
- The Nature must fulfill a set of temporal constraints called **Contingent Constraints (** C_c **)**

Temporal Problems (with Temporal Uncertainty)

Temporal Problems (with Temporal Uncertainty)

Temporal Problems $A_s \longrightarrow A_e$ [7*,* 11] B_{s} $[0, \infty)$ B_{ρ} [8*,* 11] [0*,* 20] A_s , A_e , B_s , B_e are **Time Points** (X_c) \rightarrow represents **Free Constraints** (C_f)

Temporal Problems with Uncertainty

- A_s , A_e , B_s are **Controllable Time Points** (X_c) B_e is an **Uncontrollable Time Point** (X_u)
- \rightarrow represents **Free Constraints (** C_f) \cdots represents **Contingent Constraints** (C_c)

Strong Controllability (No observation)

Find a **fixed schedule** for controllable time points

Fixed Schedule

- start (A) at 0
- start (B) at 11

Strong Controllability (No observation)

Find a **fixed schedule** for controllable time points

Dynamic Controllability (Past observation) Find a **strategy that depends on past observations only**, for scheduling controllable time points

- start (A) at 0
- start (B) at 11

Dynamic Strategy • start (A) at 0 • start (B) at C

Strong Controllability (No observation)

Find a **fixed schedule** for controllable time points

- **Dynamic Controllability (Past observation)** Find a **strategy that depends on past observations only**, for scheduling controllable time points
- **Weak Controllability (Full observation)** Find a **"clairvoyant" strategy** for scheduling controllable time points

Fixed Schedule

- start (A) at 0
- start (B) at 11

Dynamic Strategy

- start (A) at 0
- \bullet start(B) at C

Clairvoyant Strategy • start (A) at 0 • start(B) at $C - 1$