Solving Temporal Problems using SMT: Strong Controllability

Alessandro Cimatti Andrea Micheli Marco Roveri

Embedded Systems Unit, Fondazione Bruno Kessler Trento, Italy amicheli@fbk.eu

12 October 2012

Constraint Programming 2012

2 SMT-based encodings

- DTPU encodings
- TCSPU specific encodings

Second Experimental Evaluation

Outline

1 The Strong Controllability Problem

2 SMT-based encodings
 • DTPU encodings
 • TCSPU specific encodings

3 Experimental Evaluation

Experimental Evaluation

Scheduling for planning applications

The motivating problem

Experimental Evaluation

Scheduling for planning applications

The motivating problem

Experimental Evaluation

Scheduling for planning applications

The motivating problem

Experimental Evaluation

Scheduling for planning applications

The motivating problem

Experimental Evaluation

Scheduling for planning applications

The motivating problem

The Strong Controllability Problem $0 \bullet 00$

SMT-based encodings

Experimental Evaluation

Conclusion 0

Temporal Problems with Uncertainty

Example

 A_s , A_e , B_s are Controllable Time Points (X_c) B_e is an Uncontrollable Time Point (X_u)

- \rightarrow represents **Free Constraints** (C_f)
- \cdots represents **Contingent Constraints** (C_c)

The Strong Controllability Problem $0 \bullet 00$

SMT-based encodings

Experimental Evaluation

Conclusion 0

Temporal Problems with Uncertainty

Example

 A_s , A_e , B_s are Controllable Time Points (X_c) B_e is an Uncontrollable Time Point (X_u)

- \rightarrow represents **Free Constraints** (C_f)
- \cdots represents **Contingent Constraints** (C_c)

Taxonomy

Let
$$\{x_1, \ldots, x_k\} \doteq X_c \cup X_u$$
.

STPU	TCSPU	DTPU
No disjunctions	Interval disjunctions	Arbitrary disjunctions
$(x_i - x_j) \in [I, u]$	$(x_i - x_j) \in \bigcup_w [I_w, u_w]$	$\bigvee_{w}((x_{i_w}-x_{j_w})\in[I_w,u_w])$

The Strong Controllability Problem $_{\rm OOOO}$

SMT-based encodings

Experimental Evaluation

Conclusion O

Strong Controllability

Intuition

Search for a **Fixed Schedule** that fulfills all free the constraints in every situation. The Strong Controllability Problem $_{\rm OOOO}$

SMT-based encodings

Experimental Evaluation

Conclusion 0

Strong Controllability

Intuition

Search for a **Fixed Schedule** that fulfills all free the constraints in every situation.

SMT-based encodings

Experimental Evaluation

Strong Controllability

Definition

A temporal problem with uncertainty is Strongly Controllable if

$$\exists \vec{X}_c. \forall \vec{X}_u. (C_c(\vec{X}_c, \vec{X}_u) \rightarrow C_f(\vec{X}_c, \vec{X}_u))$$

where \vec{X}_c and \vec{X}_u are the vectors of controllable and uncontrollable time points respectively, $C_c(\vec{X}_c, \vec{X}_u)$ are the contingent constraints and $C_f(\vec{X}_c, \vec{X}_u)$ are the free constraints.

The Strong Controllability Problem	SMT-based encodings	Experimental Evaluation	Conclusion
000●		O	O
Contributions			

First comprehensive implemented solver for Strong Controllability

- Logic-based framework for Temporal Problems with Uncertainty
- Efficient encodings of Strong Controllability problems in SMT
- Extensive experimental evaluation of the approach

- SMT-based encodings
 DTPU encodings
 - TCSPU specific encodings

3 Experimental Evaluation

Experimental Evaluation

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

Given a formula $\phi,\,\phi$ is satisfiable if there exists a model μ such that $\mu\models\phi.$

Experimental Evaluation 0

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

Given a formula $\phi,\,\phi$ is satisfiable if there exists a model μ such that $\mu\models\phi.$

Example

 $\phi \doteq (\forall x.(x > 0) \lor (y \ge x)) \land (z \ge y)$ is satisfiable in the theory of real arithmetic because

$$\mu = \{(y, 6), (z, 8)\}$$

is a model that satisfies ϕ .

Experimental Evaluation 0

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T.

Given a formula $\phi,\,\phi$ is satisfiable if there exists a model μ such that $\mu\models\phi.$

Example

 $\phi \doteq (\forall x.(x > 0) \lor (y \ge x)) \land (z \ge y)$ is satisfiable in the theory of real arithmetic because

$$\mu = \{(y, 6), (z, 8)\}$$

is a model that satisfies ϕ .

Theories

Various theories can be used.

In this work:

- LRA (Linear Real Arithmetic)
- *QF_LRA* (*Quantifier-Free Linear Real Arithmetic*)

Quantifier Elimination in LRA

Quantifier Elimination Definition

A theory T has quantifier elimination if for every formula Φ , there exists another formula Φ_{QF} without quantifiers which is *equivalent* to it (modulo the theory T)

Quantifier Elimination in LRA

Quantifier Elimination Definition

A theory T has quantifier elimination if for every formula Φ , there exists another formula Φ_{QF} without quantifiers which is *equivalent* to it (modulo the theory T)

LRA theory admits quantifier elimination, but elimination algorithms are very costly (doubly exponential in the size of the original formula).

Example

$$(\exists x.(x \ge 2y+z) \land (x \le 3z+5)) \leftrightarrow (2y-2z-5 \le 0)$$

Experimental Evaluation Concl o o

First step: Uncontrollability Isolation

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e - b) \in [I, u]$, we introduce an offset $y \doteq b + u - e$.

Experimental Evaluation Conclusio o o

First step: Uncontrollability Isolation

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e - b) \in [I, u]$, we introduce an offset $y \doteq b + u - e$.

Definition

- Let \vec{Y}_u be the offsets for a given Temporal Problem with Uncertainty
- Let $\Gamma(\vec{Y}_u)$ be the rewritten Contingent Constraints
- Let $\Psi(\vec{X}_c, \vec{Y}_u)$ the rewritten Free Constraints.

Experimental Evaluation o

Uncontrollability Isolation: example

Original formulation

$$\begin{aligned} \exists A_s, A_e, B_s. \forall B_e. \\ ((B_e - B_s) \in [8, 11]) \rightarrow (((A_e - A_s) \in [7, 11]) \\ & \wedge ((B_e - A_s) \in [0, 20]) \\ & \wedge ((B_s - A_e) \in [0, \infty))) \end{aligned}$$

Experimental Evaluation o

Uncontrollability Isolation: example

Original formulation

 $\begin{aligned} \exists A_s, A_e, B_s. \forall B_e. \\ ((B_e - B_s) \in [8, 11]) \to (((A_e - A_s) \in [7, 11]) \\ & \land ((B_e - A_s) \in [0, 20]) \\ & \land ((B_s - A_e) \in [0, \infty))) \end{aligned}$

Rewritten formulation with Y_{B_e} offset

 $\begin{aligned} \exists A_s, A_e, B_s. \forall Y_{B_e}. \\ (Y_{B_e} \in [0,3]) \to & (((A_e - A_s) \in [7,11]) \\ & \land (((B_s + 11 - Y_{B_e}) - A_s) \in [0,20]) \\ & \land ((B_s - A_e) \in [0,\infty))) \end{aligned} \\ \bullet \quad \vec{Y}_u = [Y_{B_e}] \\ \bullet \quad & \Gamma(\vec{Y}_u) = (Y_{B_e} \in [0,3]) \\ \bullet \quad & \Psi(\vec{X}_e, \vec{Y}_u) = (((A_e - A_s) \in [7,11]) \land ... \in [0,\infty))) \end{aligned}$

- 2 SMT-based encodings
 DTPU encodings
 TCSPU specific encodings
- 3 Experimental Evaluation

Experimental Evaluation

Conclusion 0

DTPU encodings

Direct and Naïve encodings

Direct Encoding

Strong Controllability definition is by itself an encoding in SMT(LRA)

$$\exists \vec{X}_c. \forall \vec{X}_u. (C_c(\vec{X}_c, \vec{X}_u) \rightarrow C_f(\vec{X}_c, \vec{X}_u))$$

Experimental Evaluation

DTPU encodings

Direct and Naïve encodings

Direct Encoding

Strong Controllability definition is by itself an encoding in $\mathsf{SMT}(\mathit{LRA})$

$$\exists \vec{X}_c. \forall \vec{X}_u. (C_c(\vec{X}_c, \vec{X}_u) \rightarrow C_f(\vec{X}_c, \vec{X}_u))$$

Naïve Encoding

Thanks to uncontrollability isolation, Strong Controllability can be rewritten as follows.

$$\exists \vec{X}_c. \forall \vec{Y}_u. (\Gamma(\vec{Y}_u) \rightarrow \Psi(\vec{X}_c, \vec{Y}_u))$$

The Strong Controllability Problem	SMT-based encodings	Experimental Evaluation O	Conclusion O
DTPU encodings			
Distributed Encodir	וg		

Idea: because of the cost of quantifier elimination, many small quantifications can be solved more efficiently than a big single one.

The Strong Controllability Problem	SMT-based encodings	Experimental Evaluation 0	Conclusion 0
DTPU encodings			

Distributed Encoding

Idea: because of the cost of quantifier elimination, many small quantifications can be solved more efficiently than a big single one.

Starting Point

We assume $\Psi(\vec{X}_c, \vec{Y}_u)$ $\Psi(\vec{X}_c, \vec{Y}_u) \doteq \bigwedge_h \psi_h(\vec{X}_{c_h}, \vec{Y}_{u_h})$

The Strong Controllability Problem	SMT-based encodings	Experimental Evaluation 0	Conclusion O
DTPU encodings			

Distributed Encoding

Idea: because of the cost of quantifier elimination, many small quantifications can be solved more efficiently than a big single one.

Starting Point

We assume $\Psi(\vec{X}_c, \vec{Y}_u)$

$$\Psi(\vec{X}_c, \vec{Y}_u) \doteq \bigwedge_h \psi_h(\vec{X}_{c_h}, \vec{Y}_{u_h})$$

Distributed Encoding

From the Naïve Encoding we can derive a Distributed Encoding, by pushing the quantifications:

$$\exists \vec{X}_c. \bigwedge_h \forall \vec{Y}_{u_h}. (\neg \Gamma(\vec{Y}_u)|_{Y_{u_h}} \lor \psi_h(\vec{X}_{c_h}, \vec{Y}_{u_h}))$$

The !	Strong	Controllability	y Problem

Experimental Evaluation Co

DTPU encodings

Eager \forall Elimination Encoding

Idea: Starting from *Distributed Encoding*, we can eliminate quantifiers during the encoding, producing a *QF_LRA* formula.

SMT-based encodings

Experimental Evaluation

Conclusion 0

DTPU encodings

Eager \forall Elimination Encoding

Idea: Starting from *Distributed Encoding*, we can eliminate quantifiers during the encoding, producing a *QF_LRA* formula.

Encoding

Let

$$\psi_h^{\mathsf{\Gamma}}(\vec{X}_{c_h}) \doteq \neg \exists \vec{Y}_{u_h} \cdot (\mathsf{\Gamma}(\vec{Y}_{u_h})|_{Y_{u_h}} \land \neg \psi_h(\vec{X}_{c_h}, \vec{Y}_{u_h}))$$

- Resolve $\psi_h^{\Gamma}(\vec{X}_{c_h})$ for every clause independently using a quantifier elimination procedure
- **2** Solve the QF_LRA encoding:

$$\exists \vec{X}_c. \bigwedge_h \psi_h^{\Gamma}(\vec{X}_{c_h})$$

SMT-based encodings
 DTPU encodings
 TCSPU specific encodings

3 Experimental Evaluation

The Strong Controllability Problem	SMT-based encodings	Experimental Evaluation	Conclusion
	○○○○○○○●○○	0	O
TCSPU specific encodings			

Exploit TCSPU structure

Consider a single *TCSPU* constraint:

$$B - A \in \begin{bmatrix} 0, 20 \end{bmatrix} \begin{bmatrix} 25, 50 \end{bmatrix} \begin{bmatrix} 60, 75 \end{bmatrix}$$

The Strong Controllability Problem	SMT-based encodings	Experimental Evaluation	Conclusion
	○○○○○○○●○○	0	O
TCSPU specific encodings			

Exploit *TCSPU* structure

Consider a single *TCSPU* constraint:

$$B - A \in \begin{bmatrix} 0, 20 \end{bmatrix} \begin{bmatrix} 25, 50 \end{bmatrix} \begin{bmatrix} 60, 75 \end{bmatrix}$$

Encoding TCSPU constraints in 2-CNF (Hole Encoding)

$$((B - A) > 0)$$

 $\land ((B - A) < 20) \lor ((B - A) > 25)$
 $\land ((B - A) < 50) \lor ((B - A) > 60)$
 $\land ((B - A) < 75)$

SMT-based encodings

Experimental Evaluation

Conclusion 0

TCSPU specific encodings

Static quantification TCSPU

Idea: Exploit Hole Encoding for *TCSPU* to statically resolve quantifiers in the Eager \forall elimination encoding.

SMT-based encodings

Experimental Evaluation

Conclusion 0

TCSPU specific encodings

Static quantification TCSPU

Idea: Exploit Hole Encoding for *TCSPU* to statically resolve quantifiers in the Eager \forall elimination encoding.

Approach

Hole Encoding gives us a 2-CNF formula. We can enumerate all the possible (8) cases and statically resolve the quantification.

Experimental Evaluation

Conclusion 0

TCSPU specific encodings

Static quantification TCSPU

Idea: Exploit Hole Encoding for *TCSPU* to statically resolve quantifiers in the Eager \forall elimination encoding.

Approach

Hole Encoding gives us a 2-CNF formula. We can enumerate all the possible (8) cases and statically resolve the quantification.

Cases

Let $b_i, b_j \in X_c$, $e_i, e_j \in X_u$.

The only possible clauses in the Hole Encoding are in the form:

SMT-based encodings

Experimental Evaluation O

Conclusion O

TCSPU specific encodings

Static quantification *TCSPU* (Example)

Let $b \in X_c$, $e \in X_u$ and let y_e be the offset for e. Let C be a hole-encoded clause of the *TCSPU* problem.

$$C \doteq (b - e) \le u \lor (b - e) \ge l$$

 $\underset{\texttt{OOOOOOOOO}}{\mathsf{SMT}}{\mathsf{based encodings}}$

Experimental	Evaluation

TCSPU specific encodings

Static quantification *TCSPU* (Example)

Let $b \in X_c$, $e \in X_u$ and let y_e be the offset for e. Let C be a hole-encoded clause of the *TCSPU* problem.

$$C \doteq (b - e) \le u \lor (b - e) \ge l$$

In the eager \forall elimination encoding we have

$$egistimation \exists y_e.((y \ge 0) \land (y \le u_e - l_e) \land \
egistimation \neg (((b - (b_e + u - y_e)) \le u) \lor ((b - (b_e + u - y_e)) \ge l)).$$

SMT-based encodings

Experimental	Evaluation

TCSPU specific encodings

Static quantification *TCSPU* (Example)

Let $b \in X_c$, $e \in X_u$ and let y_e be the offset for e. Let C be a hole-encoded clause of the *TCSPU* problem.

$$C \doteq (b - e) \le u \lor (b - e) \ge l$$

In the eager \forall elimination encoding we have

$$egistimation \exists y_e.((y \ge 0) \land (y \le u_e - l_e) \land \
egistimation \neg (((b - (b_e + u - y_e)) \le u) \lor ((b - (b_e + u - y_e)) \ge l)).$$

The formula can be statically simplified

$$egin{aligned} R \doteq ((l-b+b_e+u_e \leq 0) \lor (l-b+b_e+l_e > 0)) \land \ ((l-b+b_e+l_e < 0) \lor (b-b_e-u-l_e \leq 0)) \end{aligned}$$

SMT-based encodings

Experimental	Evaluation

TCSPU specific encodings

Static quantification *TCSPU* (Example)

Let $b \in X_c$, $e \in X_u$ and let y_e be the offset for e. Let C be a hole-encoded clause of the *TCSPU* problem.

$$C \doteq (b - e) \le u \lor (b - e) \ge l$$

In the eager \forall elimination encoding we have

$$\neg \exists y_e.((y \ge 0) \land (y \le u_e - l_e) \land \\ \neg(((b - (b_e + u - y_e)) \le u) \lor ((b - (b_e + u - y_e)) \ge l)).$$

The formula can be statically simplified

$$egin{aligned} R \doteq ((l-b+b_e+u_e \leq 0) \lor (l-b+b_e+l_e > 0)) \land \ ((l-b+b_e+l_e < 0) \lor (b-b_e-u-l_e \leq 0)) \end{aligned}$$

Whenever a clause matches the structure of C we can derive $\psi_h^{\Gamma}(\vec{X}_{c_h})$ by substituting appropriate values for I, u, b_e , I_e and u_e in R.

2 SMT-based encodings
 • DTPU encodings
 • TCSPU specific encodings

Second Experimental Evaluation

Experimental Evaluation

Conclusion 0

Strong Controllability Results

- Random instance generator
- SMT solvers:
 - Z3 (QF_LRA, LRA)
 - MathSAT5 (QF_LRA)
- Quantification techniques:
 - Z3 simplifier
 - Fourier-Motzkin
 - Loos-Weispfenning
 - Static quantification for *TCSPU*

Experimental Evaluation

Conclusion 0

Strong Controllability Results

STPU Results

- Random instance generator
- SMT solvers:
 - Z3 (QF_LRA, LRA)
 - MathSAT5 (QF_LRA)
- Quantification techniques:
 - Z3 simplifier
 - Fourier-Motzkin
 - Loos-Weispfenning
 - Static quantification for *TCSPU*

Experimental Evaluation

Conclusion 0

Strong Controllability Results

TCSPU Results

• Random instance generator

- SMT solvers:
 - Z3 (QF_LRA, LRA)
 - MathSAT5 (QF_LRA)
- Quantification techniques:
 - Z3 simplifier
 - Fourier-Motzkin
 - Loos-Weispfenning
 - Static quantification for *TCSPU*

Experimental Evaluation

Conclusion 0

Strong Controllability Results

DTPU Results

- Random instance generator
- SMT solvers:
 - Z3 (QF_LRA, LRA)
 - MathSAT5 (QF_LRA)
- Quantification techniques:
 - Z3 simplifier
 - Fourier-Motzkin
 - Loos-Weispfenning
 - Static quantification for *TCSPU*

- 2 SMT-based encodings
 DTPU encodings
 TCSPU specific encodings
- 3 Experimental Evaluation

The Strong Controllability Problem	SMT-based encodings	Experimental Evaluation O	Conclusion

Conclusions

Contributions

- First comprehensive implemented solver for *DTPU* Strong Controllability
- Efficient encodings of Strong Controllability problems in SMT framework
- Tailored constant-time quantification technique for TCSPU
- Extensive experimental evaluation of the approach

The Strong Controllability Problem	SMT-based encodings	Experimental Evaluation O	Conclusion •

Conclusions

Contributions

- First comprehensive implemented solver for *DTPU* Strong Controllability
- Efficient encodings of Strong Controllability problems in SMT framework
- Tailored constant-time quantification technique for TCSPU
- Extensive experimental evaluation of the approach

Future works

- Dynamic Controllability
- Cost function optimization
- Incrementality

Thanks for your attention!

- Bart Peintner, Kristen Brent Venable, and Neil Yorke-Smith. Strong controllability of disjunctive temporal problems with uncertainty. In *Principles and Practice of Constraint Programming - CP*, pages 856–863, 2007.
- Thierry Vidal and Hélène Fargier. Handling contingency in temporal constraint networks: from consistency to controllabilities. *Journal of Experimental Theoretical Artificial Intelligence*, 11(1):23–45, 1999.

Backup Slides

Backup Slides

• The strong controllability problem has been introduced in Vidal and Fargier [1999].

- The strong controllability problem has been introduced in Vidal and Fargier [1999].
- Strong Controllability of DTPUs has been theoretically tackled in Peintner et al. [2007] using Meta-CSP techniques.

- The strong controllability problem has been introduced in Vidal and Fargier [1999].
- Strong Controllability of DTPUs has been theoretically tackled in Peintner et al. [2007] using Meta-CSP techniques.
- We developed SMT-based encodings also for Weak Controllability decision problem, and a portfolio of SMT-based algorithms for strategy extraction.

Temporal Problems with Uncertainty

Definition

A Temporal Problem with Uncertainty is a tuple (X_c, X_u, C_c, C_f) .

- $X_c \doteq \{b_1, ..., b_n\}$ is the set of *controllable time points*
- $X_u \doteq \{e_1, ..., e_m\}$ is the set of *uncontrollable time points*
- $C_c \doteq \{cc_1, ..., cc_m\}$ is the set of *contingent constraints*
- $C_f \doteq \{cf_1, ..., cf_h\}$ is the set of *free constraints* $cc_i \doteq (e_i - b_{j_i}) \in [l_i, u_i]$ $cf_i \doteq \bigvee_{j=1}^{D_i} (x_{i,j} - y_{i,j}) \in [l_{i,j}, u_{i,j}]$
- $j_i \in [1 \dots n]$
- $l_i, u_i \in \mathbb{R}$
- $I_i \leq u_i$
- $I_{i,j}, u_{i,j} \in \mathbb{R} \cup \{+\infty, -\infty\}$

- $I_{i,j} \leq u_{i,j}$
- *D_i* is the number of disjuncts for the *i*-th constraint

•
$$x_{i,j}, y_{i,j} \in X_c \cup X_u$$

Rules

• The Agent schedules a set of **Controllable Time Points** (X_c)

Rules

- The Agent schedules a set of **Controllable Time Points** (X_c)
- The Agent must fulfill a set of temporal constraints called **Free Constraints (***C*_{*f*}**)**

Rules

- The Agent schedules a set of **Controllable Time Points** (X_c)
- The Agent must fulfill a set of temporal constraints called **Free Constraints (***C*_{*f*}**)**
- The *Nature* tries to prevent the success of the agent scheduling a set of **Uncontrollable Time Points** (*X_u*)

Rules

- The Agent schedules a set of **Controllable Time Points** (X_c)
- The Agent must fulfill a set of temporal constraints called **Free Constraints (***C*_{*f*}**)**
- The *Nature* tries to prevent the success of the agent scheduling a set of **Uncontrollable Time Points** (*X_u*)
- The *Nature* must fulfill a set of temporal constraints called **Contingent Constraints (***C_c***)**

Let $\{x_1, ..., x_k\}$ be the set of all time points of the temporal problem (with uncertainty).

		Uncertainty Type		
		No Uncertainty	Uncertainty	
рe	No disjunctions	STD	STPU	
Ę	$(x_i - x_j) \in [I, u]$	JIF		
int	<u>E</u> Interval disjunctions	TCSP	TCSPU	
$[u_{ij}]$ $(x_i - x_j) \in \bigcup_w [I_w, u_w]$		1031	10310	
ons	Arbitrary disjunctions	ΠΤΡ		
Ŭ	$\bigvee_w((x_{i_w}-x_{j_w})\in[I_w,u_w])$	DT	DITO	

Consistency of STP

of instances

Consistency of TCSP

of instances

Consistency of *DTP*

of instances