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Temporal Planning and Execution

Plans generated from an automated planner need to be executed in the
real world, that might be not aligned with the model used for planning
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Classic Solution: STN Plans and Flexibility
Leave some freedom to the executor to reschedule actions by constraining
relevant time-points instead of fixing them

Example
Simple navigation planning problem:
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A First Problem: Validation

An STN plan allows several (often infinite) executions. We need to ensure
that each of these is:

1 executable (action conditions are satisfied)
2 resource-valid (resource constraints are always satisfied)
3 goal-reaching

Contribution #1
Technique to automatically validate STN plan for action-based planning
languages
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Robustness Envelopes

Problem: understand and generalize plan applicability when some
quantities (e.g. durations, consumption rates, ...) differ from the model

Input
1 a set of numeric parameters
2 a planning problem that may use some parameters
3 an STN plan that may use some parameters

Output
The region of all possible parameter evaluation that keeps the STN plan
valid for the planning problem
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Robustness Envelopes

Example
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Contribution #2
Technique to automatically synthesize Robustness Envelopes given a
parametric planning problem (in PDDL 2.1 with continuous resources) and
an STN plan
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More Complex Envelopes

In the previous example, assume that action uniformly consume battery at
a rate γrate
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Studying the envelopes allows understanding of parameter
inter-dependencies
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Satisfiability Modulo Theory (SMT)

Overall Idea
Leverage SMT framework to uniformly, logically encode and solve the
validation and synthesis problems

SMT is the problem of deciding the satisfiability of a first-order formula
expressed in a given (decidable) theory T .

A formula φ is satisfiable if there exists a first-order interpretation µ such
that µ |= φ.

Example
φ

.= (x > 2) ∧ (x < 8) ∧ ((x < 1) ∨ (x > 7))

Is satisfiable in the Theory of Real Arithmetic because {x .= 7.5} |= φ

Is unsatisfiable in the Theory of Integer Arithmetic
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The SMT Encoding: Validity
Components

1 encπ
tn: encodes the temporal constraints imposed by π limiting the

possible orderings of time points.
2 encπ

eff encodes the effects of each time point on the fluents and
predicates

3 encπ
proofs encodes the validity properties of the plan, namely:

I conditions of each executed action are satisfied
I the goal is reached
I ε-separation constraint imposed by PDDL 2.1 is respected.

Theorem (STN Plan Validity)
π is a valid plan for P if:

1 encπ
tn ∧ encπ

eff is satisfiable
2 encπ

tn ∧ encπ
eff → encπ

proofs is valid
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The SMT Encoding: Synthesis

Add parameters variables (Γ̄) to the formulae: encπΓ
tn , encπΓ

eff and encπΓ
proofs

Robustness Envelope Synthesis
ρ(Γ̄)=̇∃X̄ .(encπΓ

tn ∧ encπΓ
eff ) ∧ ∀X̄ .((encπΓ

tn ∧ encπΓ
eff )→ encπΓ

proofs)

The models of ρ(Γ̄) are all and only the parameter values that make the
plan valid for the problem.

ρ(Γ̄) encodes the Robustness Envelope!
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Dealing with Quantifiers

The formula ρ(Γ̄) contains quantifiers, so it is hard to exploit for plan
generalization and analysis

LRA Quantifier Elimination
(∃x .(x ≥ 2y + z) ∧ (x ≤ 3z + 5)) QE−−→ (2y − 2z − 5 ≤ 0)

For every formula in LRA, there exists an equivalent quantifier-free
formula, also in LRA.
Algorithms to compute quantifier elimination are very costly (doubly
exponential in LRA)
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Parameter Decoupling

Idea
Extract an axis-parallel hyper-rectangle from the robustness envelope to:

1 compactly represent an under-approximation of the parameter space
2 obtain parameter independence from one another

maximize
∑
γi ∈Γ

(ubi − lbi ) s.t.

(
∧

γi ∈Γ
lbi≤ubi ) ∧

∀Γ̄.((
∧

γi ∈Γ
lbi≤pari≤ubi )→ ρ(Γ̄))
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Implementation
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Validation of STN Plans
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Synthesis of Envelopes: Impact of Problem Size

Problem 1 2 3 4 5 6
AUV 9.8 16.4 25.6 21.7 33.9 60
Generator 0.31 0.28 0.46 1.12 23.1 Time Out
Solar Rover 0.75 1.03 1.39 1.64 2.25 3.45
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Synthesis of Envelopes: Impact of Number of Parameters

Problem 1 2 3 4 5 6
AUV #1 1.7 0.78 0.97 3.14 51.15 TO
AUV #2 2.92 1.05 1.32 7.41 94.84 TO
AUV #3 5.1 1.2 1.82 9.87 107.17 TO
AUV #4 7.06 1.2 2.04 16.36 89.1 TO
Gen #1 11.14 59.91 542.3 6350.3 TO TO
Gen #2 14.13 72.76 615.22 TO TO TO
Gen #3 375.4 422.55 1130.43 TO TO TO
Gen #4 TO TO TO TO TO TO

Rover #1 1.59 2.32 3.83 5.55 5.28 8.47
Rover #2 2.69 4.52 5.14 5.62 8.32 13.02
Rover #3 6.49 6.67 9.07 7.98 11.55 19.7
Rover #4 8.0 32.72 22.16 12.52 67.6 29.55
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Conclusions

Summary
1 Validate STN plans in action-based setting (full PDDL 2.1)
2 Definition and formalization of robustness envelopes synthesis
3 Parameter decoupling
4 Initial implementation and experiments

Future Directions
1 Scalability! Maybe use approximated quantifier elimination
2 Theoretical and practical comparison with Strong Temporal Planning

with Uncontrollable Durations
3 Exploit robustness enveloped in execution (beyond simple STN)
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Thanks for your attention!

Robustness Envelopes for Temporal Plans
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