

Robustness Envelopes for Temporal Plans

$\begin{array}{rll} {\sf Michael\ Cashmore}^1 & {\sf Alessandro\ Cimatti}^2 & {\sf Daniele\ Magazzeni}^1 \\ & {\sf Andrea\ Micheli}^2 & {\sf Parisa\ Zehtabi}^1 \end{array}$

 1 Department of Informatics, King's College London, UK 2 Embedded Systems Unit, Fondazione Bruno Kessler, Italy

10th November 2018

AAAI 2019, Honolulu, HA, USA

Temporal Planning and Execution

Plans generated from an automated planner need to be <u>executed</u> in the real world, that might be not aligned with the model used for planning

Classic Solution: STN Plans and Flexibility

Leave some freedom to the executor to reschedule actions by constraining relevant time-points instead of fixing them

Example

Simple navigation planning problem:

- Robot must collect some data in D and transmit it T
- battery is drained at a constant rate of 0.4% per time unit

STN plan:

Outline

2 SMT-based techniques

A First Problem: Validation

An STN plan allows several (often infinite) executions. We need to ensure that each of these is:

- executable (action conditions are satisfied)
- In the second second
- goal-reaching

Contribution #1

Technique to automatically validate STN plan for action-based planning languages

Robustness Envelopes

Problem: understand and generalize plan applicability when some quantities (e.g. durations, consumption rates, ...) differ from the model

Input

- a set of numeric parameters
- **2** a planning problem that may use some parameters
- In STN plan that may use some parameters

Output

The region of all possible parameter evaluation that keeps the STN plan valid for the planning problem

Robustness Envelopes

Contribution #2

Technique to automatically synthesize Robustness Envelopes given a parametric planning problem (in PDDL 2.1 with continuous resources) and an STN plan

More Complex Envelopes

In the previous example, assume that action uniformly consume battery at a rate $\gamma_{\textit{rate}}$

Studying the envelopes allows understanding of parameter inter-dependencies

2 SMT-based techniques

3 Experiments

Satisfiability Modulo Theory (SMT)

Overall Idea

Leverage SMT framework to uniformly, logically encode and solve the validation and synthesis problems

SMT is the problem of deciding the satisfiability of a first-order formula expressed in a given (decidable) theory T.

A formula ϕ is satisfiable if there exists a first-order interpretation μ such that $\mu \models \phi$.

Example

$$\phi \doteq (x > 2) \land (x < 8) \land ((x < 1) \lor (x > 7))$$

- Is satisfiable in the Theory of Real Arithmetic because $\{x \doteq 7.5\} \models \phi$
- Is unsatisfiable in the Theory of Integer Arithmetic

The SMT Encoding: Validity

Components

- enc_{tn}^{π} : encodes the temporal constraints imposed by π limiting the possible orderings of time points.
- (2) enc_{eff}^{π} encodes the effects of each time point on the fluents and predicates
- **(a)** enc_{proofs}^{π} encodes the validity properties of the plan, namely:
 - conditions of each executed action are satisfied
 - the goal is reached
 - ϵ -separation constraint imposed by PDDL 2.1 is respected.

Theorem (STN Plan Validity)

 π is a valid plan for $\mathcal P$ if:

- $enc_{tn}^{\pi} \wedge enc_{eff}^{\pi}$ is satisfiable
- 2 $enc_{tn}^{\pi} \wedge enc_{eff}^{\pi} \rightarrow enc_{proofs}^{\pi}$ is valid

The SMT Encoding: Synthesis

Add parameters variables $(\overline{\Gamma})$ to the formulae: $enc_{tn}^{\pi_{\Gamma}}$, $enc_{eff}^{\pi_{\Gamma}}$ and $enc_{proofs}^{\pi_{\Gamma}}$

Robustness Envelope Synthesis

$$\rho(\bar{\Gamma}) \doteq \exists \bar{X}. (\mathit{enc}_{\mathit{tn}}^{\pi_{\Gamma}} \land \mathit{enc}_{\mathit{eff}}^{\pi_{\Gamma}}) \land \forall \bar{X}. ((\mathit{enc}_{\mathit{tn}}^{\pi_{\Gamma}} \land \mathit{enc}_{\mathit{eff}}^{\pi_{\Gamma}}) \to \mathit{enc}_{\mathit{proofs}}^{\pi_{\Gamma}})$$

The models of $\rho(\bar{\Gamma})$ are all and only the parameter values that make the plan valid for the problem.

 $\rho(\bar{\Gamma})$ encodes the Robustness Envelope!

Dealing with Quantifiers

The formula $\rho(\bar{\Gamma})$ contains quantifiers, so it is hard to exploit for plan generalization and analysis

LRA Quantifier Elimination

$$(\exists x.(x \ge 2y+z) \land (x \le 3z+5)) \xrightarrow{QE} (2y-2z-5 \le 0)$$

- For every formula in LRA, there exists an equivalent quantifier-free formula, also in LRA.
- Algorithms to compute quantifier elimination are very costly (doubly exponential in LRA)

Parameter Decoupling

Idea

Extract an axis-parallel hyper-rectangle from the robustness envelope to:

- compactly represent an under-approximation of the parameter space
- Ø obtain parameter independence from one another

$$\begin{array}{ll} \text{maximize} & \sum_{\gamma_i \in \Gamma} (ub_i - lb_i) \quad s.t. \\ (\bigwedge_{\gamma_i \in \Gamma} lb_i \leq ub_i) \land \\ \forall \overline{\Gamma}.((\bigwedge_{\gamma_i \in \Gamma} lb_i \leq par_i \leq ub_i) \rightarrow \rho(\overline{\Gamma})) \end{array}$$

Outline

Problem Statements

2 SMT-based techniques

3 Experiments

4 Conclusion

Implementation

Validation of STN Plans

Synthesis of Envelopes: Impact of Problem Size

Problem	1	2	3	4	5	6
AUV	9.8	16.4	25.6	21.7	33.9	60
Generator	0.31	0.28	0.46	1.12	23.1	Time Out
Solar Rover	0.75	1.03	1.39	1.64	2.25	3.45

Synthesis of Envelopes: Impact of Number of Parameters

Problem	1	2	3	4	5	6
AUV_#1	1.7	0.78	0.97	3.14	51.15	ТО
AUV_#2	2.92	1.05	1.32	7.41	94.84	ТО
AUV_#3	5.1	1.2	1.82	9.87	107.17	ТО
AUV_#4	7.06	1.2	2.04	16.36	89.1	ТО
Gen_#1	11.14	59.91	542.3	6350.3	ТО	ТО
Gen_#2	14.13	72.76	615.22	ТО	ТО	то
Gen_#3	375.4	422.55	1130.43	ТО	ТО	то
Gen_#4	ТО	ТО	ТО	ТО	ТО	ТО
$Rover_{-}\#1$	1.59	2.32	3.83	5.55	5.28	8.47
Rover_#2	2.69	4.52	5.14	5.62	8.32	13.02
Rover_#3	6.49	6.67	9.07	7.98	11.55	19.7
Rover_#4	8.0	32.72	22.16	12.52	67.6	29.55

Outline

Problem Statements

- 2 SMT-based techniques
- 3 Experiments

Conclusions

Summary

- Validate STN plans in action-based setting (full PDDL 2.1)
- **②** Definition and formalization of robustness envelopes synthesis
- Operation of the second sec
- Initial implementation and experiments

Future Directions

- Scalability! Maybe use approximated quantifier elimination
- Theoretical and practical comparison with Strong Temporal Planning with Uncontrollable Durations
- Sexploit robustness enveloped in execution (beyond simple STN)

Thanks for your attention!

Robustness Envelopes for Temporal Plans

Backup Slides

Backup 1

TODO