
Temporal Planning with Temporal Metric Trajectory Constraints

Andrea Micheli Enrico Scala

Embedded Systems Unit, Fondazione Bruno Kessler, Italy

January 23, 2019

AAAI 2019, Honolulu, HA, USA

Context

Industrial automation requires highly coupled planning and scheduling
constraints
I Logistics (e.g., deadlines and task allocation)
I Synchronization in industrial production (e.g., processing durations,

collision avoidance)
I Autonomous agents: AGVs, UAVs (e.g., timed coordination, multi-goal)

Model-based approaches are highly desirable to make automation as
flexible as possible ⇒ AI planning

1/13

Application Example: Hoist Scheduling Problem

H

I2I1 I3

LL LT1 LT2 LU

Each item Ii must follow a “recipe” consisting of a sequence of
chemical baths (each in a type of tank) and processing timing
constraints (min-max in each tank) - (Scheduling part)
Multiple hoists can be used to move items, and need collision
avoidance - (Planning part)
Goal: synthesize hoists movement plan to process a set of items
according to their recipes

2/13

Motivation of this work

Temporal constraints are hard for AI Planning
I Representation :: Encoding in standard AI planning languages is

“possible” but cumbersome
I Reasoning :: Existing solving techniques do not scale well with complex

temporal constraints

Practically, people either choose classical planning (and abstract the
scheduling problem away) or switch to scheduling (and abstract the
planning problem away)

Research Questions: How can we express and efficiently solve
planning problems with expressive temporal constraints?
Main Idea: Planning and scheduling at the very same level of
representation. Express action time constraints explicitly, and not
implicitly

3/13

Outline

1 Representation :: Temporal Planning Problem

2 Reasoning :: Heuristic Forward Search

3 Experimental Evaluation

4 Conclusion

Temporal Knowledge

Intuition
Allowing to predicate (temporally) over action instances within a plan
using first-order temporal metric constraints

Example
∀̄l0 : load(Ix , LL).∃̄u1 : unload(Ix , LT1).∃̄l1 : load(Ix , LT1).
∃̄u2 : unload(Ix , LT2).∃̄l2 : load(Ix , LT2).∃̄u3 : unload(Ix , LU).

(l0 ≤ u1) ∧ (10 ≤ (l1 − u1) ≤ 12) ∧ (l1 ≤ u2) ∧
(20 ≤ (l2 − u2) ≤ 21) ∧ (l2 ≤ u3)

4/13

Formalization: the TPP Problem

Classical Planning Actions |=
Planning Theory

(Domain, Instance)
Causal Model

Temporal Model
Timing of Actions |=

Temporal Knowledge
(first-order logic)

TPP = Classical Planning ⊕ Temporal Knowledge
Temporal knowledge is a set of axioms:
I Temporal Axiom:

F Boolean combination of v1 − v2 ≤ k with v1 and v2 action vars, k ∈ Q
F ∀̄v : a.φ where v is a fresh action variable, a is a ground classical action

and φ is a temporal axiom
F ∃̄v : a.φ where v is a fresh action variable, a is a ground classical action

and φ is a temporal axiom

Solution: partial order over a set of action instances a1; a2; · · · ; an. It
is valid iff causally and temporally consistent

5/13

Formalization: the TPP Problem

Highlights
Arbitrary nesting of action quantifiers is allowed!
Can be used to capture significant fragments of well known temporal
planning formalisms (i.e., ANML, PDDL2.1)
Planning problem with TK proven decidable (with integral time; over
continuous time is an open question)

How do we solve it?

6/13

Outline

1 Representation :: Temporal Planning Problem

2 Reasoning :: Heuristic Forward Search

3 Experimental Evaluation

4 Conclusion

Heuristic Forward Search :: Sketch of TPACK
Semi Symbolic State Space

Classical state with temporal commitments (i.e., action orderings,
existential matching)
(Lazy search) Do classical planning and check temporal consistency
on goal states
(Eager search) Splitting over different temporal scenarios within the
search. Enables checking online with a theory solver (i.e., Simple
Temporal Network)

Temporally Aware Subgoaling Based Heuristics
Observation: h1(P) relaxes TPP too!
Enhancement: temporal commitments as online subgoals. This yields
deep version of h1(P), namely h1

dtk(P,TK)
I Existential matching yields request within the search (e.g., connection

between unload and load in the HSP example)
I Automatically exploiting temporal knowledge for heuristic purposes

7/13

Outline

1 Representation :: Temporal Planning Problem

2 Reasoning :: Heuristic Forward Search

3 Experimental Evaluation

4 Conclusion

Experimental Setup
Competitors

Tpack: our planner
I Different heuristics

Other Planners (PDDL 2.1):
I Optic
I ITSAT
I Temporal Fast Downward (TFD)

Benchmarks
International Planning Competition (IPC) domains
Highly temporally expressive domains
I Industrial domains

F HSP
F MaJSP (Multi-agent planning variant of JSP)

I IPC domains with intermediate effects

8/13

Coverage Results for IPC Problems
Te

m
po

ra
lI

PC
(d

)

Domain (# inst.) ITSAT Optic TFD Tpack
(hdtk)

Tpack
(hatk)

Tpack
(hadd)

Tpack
(Lazy)

Driverlog (20) 18 15 6 14 14 14 5
Floortile (8) 8 7 6 4 4 4 2

MapAnalyser (20) 20 0 20 20 20 20 0
MatchCellar (10) 10 9 10 6 3 1 3

Satellite (20) 20 14 20 9 9 7 3
TMS (20) 20 1 1 1 1 0 0
Total (98) 96 46 63 54 51 46 13

Number of instances solved, higher is better
TPACK complementary to forward search planner (OPTIC and
TFD) but dominated by ITSAT

9/13

Coverage Results for Industrial Problems
H

SP
(b

)

#Items ITSAT
clip*

ITSAT
cont.*

Optic
clip

Optic
cont.

Tpack
(hdtk)

Tpack
(hatk)

Tpack
(hadd)

Tpack
(Lazy)

1 0 2 1 1 10 10 10 10
2 0 0 0 0 10 9 2 3
3 0 0 0 0 10 5 1 1
4 0 0 0 0 10 3 1 1
5 0 0 0 0 10 3 1 1
6 0 0 0 0 9 1 1 0
7 0 0 0 0 9 1 1 0
8 0 0 0 0 8 1 1 0
9 0 0 0 0 7 1 0 0

10 0 0 0 0 7 1 0 0
Tot. 0 2 1 1 90 35 18 16

M
A

JS
P

(c
)

#Jobs ITSAT
clip*

ITSAT
cont.*

Optic
clip

Optic
cont.

Tpack
(hdtk)

Tpack
(hatk)

Tpack
(hadd)

Tpack
(Lazy)

1 NA NA 22 0 56 56 57 57
2 NA NA 0 0 41 40 37 46
3 NA NA 0 0 25 25 23 29
4 NA NA 0 0 11 10 10 12

Tot. NA NA 22 0 133 131 127 144

10/13

Solving Times of Tpack for HSP

100 101 102 103

Solving time (s)

0

20

40

60

80
In

sta
nc

es
So

lve
d

Tpack (hdtk)
Tpack (hatk)
Tpack (hadd)
Tpack (Lazy)

11/13

Temporally Expressive Variants of IPC
U

nc
er

ta
in

ty
IP

C
(e

) Domain (# inst.) ITSAT
clip*

ITSAT
cont.*

Optic
clip

Optic
cont.

Tpack
(hdtk)

Tpack
(hatk)

Tpack
(hadd)

Tpack
(Lazy)

Driverlog (20) 0 0 0 5 6 9 8 7
Floortile (8) 0 0 0 0 4 4 4 1

MapAnalyser (20) 0 0 0 0 2 5 6 0
MatchCellar (10) 4 0 3 10 5 1 1 2

Satellite (20) 1 0 0 1 5 5 4 2
TMS (20) 1 0 0 0 0 0 0 0

Total (98) 6 0 3 16 22 24 23 12

Instances obtained by introducing intermediate effects. This encodes
problems with uncontrollable durations
TPACK achieves higher score, except in MatchCellar

12/13

Outline

1 Representation :: Temporal Planning Problem

2 Reasoning :: Heuristic Forward Search

3 Experimental Evaluation

4 Conclusion

Conclusions

Contributions
Formal account for temporally expressive planning problems
I Grounded on Classical Planning
I Provide powerful temporal constructs

Heuristic search framework to solve TPP
I Novel search schema and temporally informed heuristics
I Extend reach of temporal planners to industrial problems

Future Work
Further theoretical investigation on the expressiveness and complexity
of TPP
Additional temporal constructs in TK to capture common temporal
patterns
Experimental analysis with Timeline and ANML planners

13/13

Thanks for your attention!

Temporal Planning with Temporal Metric Trajectory Constraints

Backup Slides

hadd

hadd (G) =

0 if s |= G
mina∈ach(G) hadd (pre(a)) + 1 if |G | = 1∑

g∈G(hadd (g)) if |G | > 1

16/13

Eager-SearchSuccessor Function

1: function Succ(s - State, a - Action)
2: µ′ ← ClassicalApply(s.µ, a)
3: S ← {〈µ′, s.π + 〈ActionInstance(a)〉, s.ρ, s.σ〉}
4: for all ȳ ∈ s.ρ s.t. type(ȳ) = a do
5: S ← S ∪ {〈µ′, s.π + 〈ȳ〉, s.ρ \ {ȳ}, s.σ〉}
6: for all γ ∈ TK and a is universally quantified in γ do
7: S ←

⋃
s′∈Sapply(s′, γ′, ∅)

8: return {s ∈ S | TN(s) is consistent}
9: function Apply(s - State, γ - Temporal Axiom, b - ∀̄Bind)

10: S ← ∅
11: if γ is Quantifier Free then
12: S ← {s}
13: else if γ = ∀̄x : a.γ′ then
14: S ← {s}
15: for all ȳ ∈ π s.t. type(ȳ) = a do
16: S ←

⋃
s′∈Sapply(s′, γ′, b ∪ {x = ȳ})

17: else if γ = ∃̄x : a.γ′ then
18: for all ȳ ∈ π ∪ s.ρ s.t. type(ȳ) = a do
19: σ′ ← s.σ ∪ {fx (b) = ȳ}
20: S ← S ∪ apply(〈s.µ, s.π, s.ρ, σ′〉, γ′, b)
21: ā′ ← ActionInstance(a)
22: σ′ ← s.σ ∪ {fx (b) = ā′}
23: S ← S ∪ apply(〈s.µ, s.π, s.ρ ∪ {ā′}, σ′〉, γ′, b)
24: return S

17/13

Decidability
Theorem
TPP is decidable if interpreted over integer time.

Proof sketch.
We reduce TPP to the satisfiability of a TPTL formula with past operators, that
is decidable. TPTL offers the usual LTL operators e.g., � (for always in the
future) and ♦ (for eventually); the past operators e.g., � (for always in the past)
and (for once in the past); and “freezing quantifiers” of the form “x .” referring
to the timing of states. The classical planning part of TPP has a known
compilation in the LTL fragment of TPTL, while the temporal action axioms can
be encoded using freezing quantifiers in combination with temporal operators. As
for our formalism, TPTL allows Boolean combinations of binary temporal
constraints expressed over the variables of freezing quantifiers, hence we only
need to encode the universal and existential quantification as freezing
quantifications. This can be done by translating ∀̄v : a.α into
�v .(pa → [α]) ∨�v .(pa → [α]) where [α] indicates the recursive compilation of
the right-hand side of the axiom, and pa encodes the states in which action a is
triggered. Similarly, ∃̄v : a.α translates to ♦v .(pa ∧ [α]) ∨ v .(pa ∧ [α]).

18/13

Solving the TPP Problem

Challenges
Temporal Axiom in TK use dense time: enumeration seems not
practical
Given a candidate classical plan, matching quantified variables to
actions is combinatorial (dealing with multiple occurrences of the
same action, e.g. moves in HSP)
The same classical state might need to occur multiple times in a valid
plan (loops; subsumption is problematique)
TK allows for arbitrary action quantifier nesting

Solution Schema
Forward state-based search exploring causal valid plans
Heuristics to capture temporal aspects and causal aspects together

19/13

Forward-Search Schema

Basic
I Classical states augmented with lifted time representation (similar to

POPF)
I Search records into states the matching of variables with actions in the

explored prefix

Variants
I Lazy-Search: solving the matching problem only for valid classical

plans
I Eager-Search: solving the matching problem online. This

anticipates some of the temporal commitment during search increasing
prediction. Lead to predict a set of existential quantified actions, i.e.
matched ∃̄

20/13

Heuristics

Devised as extensions of hadd

hadd
Classical
Planning TPP

relaxes relaxes

hadd does not consider TK in any way, in particular existential quantifiers:
hatk = hadd + |matched ∃̄|
hdtk injects artificial goals to the abstracted problem to account for
the preconditions of actions needed because of the existential
matching

21/13

Related work
Durative actions
I encode the execution of an action as an interval
I can express complex temporal constraints yet requiring convoluted

constructions (e.g. clip/strut/container)
F E.g. HSP requires 3× (n ×m × k) actions in PDDL 2.1

I Practical only for domains with loose temporal constraints
PDDL3
I Trajectory constraints over state traces: different from scheduling

where actions are constrained
I Limitations: no LTL operator nesting nor metric constraints

HTN/ANML
I Can express intermediate effects and action decompositions, no direct

encoding of complex temporal constraints (additional actions and
constructions needed)

Timelines
I Rich temporal constructs but scarce support/efficiency for causal

constructs

22/13

	Motivation
	Representation :: Temporal Planning Problem
	Reasoning :: Heuristic Forward Search
	Experimental Evaluation
	Conclusion
	
	Appendix

